Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacterial balance that keeps us healthy

EMBL scientists present genetic catalogue of our gut flora

The thousands of bacteria, fungi and other microbes that live in our gut are essential contributors to our good health. They break down toxins, manufacture some vitamins and essential amino acids, and form a barrier against invaders. A study published today in Nature shows that, at 3.3 million, microbial genes in our gut outnumber previous estimates for the whole of the human body.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, working within the European project MetaHIT and in collaboration with colleagues at the Beijing Genomics Institute at Shenzhen, China, established a reference gene set for the human gut microbiome – a catalogue of the microbe genes present in the human gut. Their work proves that high-throughput techniques can be used to sequence environmental samples, and brings us closer to an understanding of how to maintain the microbial balance that keeps us healthy.

“Knowing which combination of genes is necessary for the right balance of microbes to thrive within our gut may allow us to use stool samples, which are non-invasive, as a measure of health,” says Peer Bork, whose group at EMBL took part in the analysis. “One day, we may even be able to treat certain health problems simply by eating a yoghurt with the right bacteria in it.”

This catalogue of the microbial genes harboured by the human gut will also be useful as a reference for future studies aiming to investigate the connections between bacterial genetic make-up and particular diseases or aspects of people’s lifestyles, such as diet.

To gain a comprehensive picture of the microbial genes present in the human gut, Bork and colleagues turned to the emerging field of metagenomics, in which researchers take samples from the environment they wish to study and sequence all the genetic material contained therein. They were the first to employ a high-throughput method called Illumina sequencing to metagenomics, dispelling previous doubts over the feasibility of using this method for such studies.

From a bacterium’s point of view, the human gut is not the best place to set up home, with low pH and little oxygen or light. Thus, bacteria have had to evolve means of surviving in this challenging environment, which this study now begins to unveil. The scientists identified the genes that each individual bacterium needs to survive in the human gut, as well as those that have to be present for the community to thrive, but not necessarily in all individuals, since if one species produces a necessary compound, others may not have to. This could explain another of the scientists’ findings, namely that the gut microbiomes of individual humans are more similar than previously thought: there appears to be a common set of genes which are present in different humans, probably because they ensure that crucial functions are carried out. In the future, the scientists would like to investigate whether the same or different species of bacteria contribute those genes in different humans.

The research was conducted within the European project MetaHIT, coordinated by Dusko Ehrlich at the Institut National de la Recherche Agronomique, in France, with genetic sequencing carried out by Jun Wang’s team at the Beijing Genomics Institute at Shenzhen, China.

Policy regarding use

EMBL press and picture releases including photographs, graphics, movies and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525

Sonia Furtado | EMBL
Further information:

Further reports about: EMBL Genomics Molecular Biology amino acid bacterial pathogens

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>