Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in urinary tract infections caught making burglar's tools

23.02.2009
Bacteria that cause urinary tract infections (UTIs) make more tools for stealing from their host than friendly versions of the same bacteria found in the gut, researchers at Washington University School of Medicine in St. Louis and the University of Washington have found.

The tools, compounds called siderophores, allow the bad bacteria to steal iron from their hosts, making it easier for the bacteria to survive and reproduce. But they also provide a potential way to target the bad strains of bacteria for eradication without adversely affecting the good strains, researchers report in a study published online Feb. 20 by PLoS Pathogens.

"When we treat an infection with antibiotics, it's like dropping a bomb—nearly everything gets wiped out, regardless of whether it's helpful or harmful," says lead author Jeff Henderson, M.D., Ph.D., a Washington University infectious disease specialist who treats patients with UTIs at Barnes-Jewish Hospital. "We'd like to find ways to target the bad bacteria and leave the good bacteria alone, and these siderophores are a great lead in that direction."

UTIs are one of the most common infections, causing around $1.6 billion in medical expenses every year in the United States. Half of all women will experience a UTI at some point in their lives, and recurrent UTIs affect 20 to 40 percent of these patients. Scientists believe 90 percent of all UTIs are caused by the bacterium Escherichia coli (E. coli).

The E. coli that cause UTIs may come from the human gut, where several strains of the bacteria reside. Scientists think some of those strains help their human hosts by aiding digestion and blocking other infectious organisms. To study how friendly and infection-causing E. coli strains differ, Henderson and colleagues at the Center for Women's Infectious Disease Research at Washington University used a new approach called metabolomics. Instead of examining genes, metabolomics analyzes all the chemicals produced by a cell, which includes bacterial growth signals, toxins and waste products.

"This allows us to look at the end products of many genes working together," says senior author Scott Hultgren, Ph.D., the Helen L. Stoever Professor of Molecular Microbiology. "We assess what all the various assembly lines are producing and which products disease-causing bacteria prefer to make, such as certain siderophores."

Bacteria studied in the experiment came from recurrent UTI patients treated at the University of Washington. Researchers cultured both E. coli from stool samples and urine samples. They found that the strains from urine made more yersiniabactin and salmochelin, two siderophores that help bacteria scavenge iron to support their own survival.

Iron is an important nutrient typically kept under tight control by the host, and there's evidence that a back-and-forth contest centered on iron has been raging for millennia between disease-causing microbes and the hosts they exploit. For example, studies suggest that humans may make a protein that specifically blocks particular bacterial siderophores.

There may be multiple ways to take advantage of the infectious bacterial strains' reliance on siderophores. Researchers will try to block or disrupt the activity of the proteins that make siderophores, but they also may use what Henderson calls a "Trojan horse" strategy.

"To steal iron, siderophores have to be sent out from the cell, bind to the iron, and then be taken back into the cell," he explains. "If we can design an antibiotic that looks like a siderophore, we might be able to trick only disease-causing bacteria into taking up the drug while leaving other bacteria alone."

Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathogens 5(2): e1000305. doi:10.1371/journal.ppat.1000305

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>