Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria in urinary tract infections caught making burglar's tools

Bacteria that cause urinary tract infections (UTIs) make more tools for stealing from their host than friendly versions of the same bacteria found in the gut, researchers at Washington University School of Medicine in St. Louis and the University of Washington have found.

The tools, compounds called siderophores, allow the bad bacteria to steal iron from their hosts, making it easier for the bacteria to survive and reproduce. But they also provide a potential way to target the bad strains of bacteria for eradication without adversely affecting the good strains, researchers report in a study published online Feb. 20 by PLoS Pathogens.

"When we treat an infection with antibiotics, it's like dropping a bomb—nearly everything gets wiped out, regardless of whether it's helpful or harmful," says lead author Jeff Henderson, M.D., Ph.D., a Washington University infectious disease specialist who treats patients with UTIs at Barnes-Jewish Hospital. "We'd like to find ways to target the bad bacteria and leave the good bacteria alone, and these siderophores are a great lead in that direction."

UTIs are one of the most common infections, causing around $1.6 billion in medical expenses every year in the United States. Half of all women will experience a UTI at some point in their lives, and recurrent UTIs affect 20 to 40 percent of these patients. Scientists believe 90 percent of all UTIs are caused by the bacterium Escherichia coli (E. coli).

The E. coli that cause UTIs may come from the human gut, where several strains of the bacteria reside. Scientists think some of those strains help their human hosts by aiding digestion and blocking other infectious organisms. To study how friendly and infection-causing E. coli strains differ, Henderson and colleagues at the Center for Women's Infectious Disease Research at Washington University used a new approach called metabolomics. Instead of examining genes, metabolomics analyzes all the chemicals produced by a cell, which includes bacterial growth signals, toxins and waste products.

"This allows us to look at the end products of many genes working together," says senior author Scott Hultgren, Ph.D., the Helen L. Stoever Professor of Molecular Microbiology. "We assess what all the various assembly lines are producing and which products disease-causing bacteria prefer to make, such as certain siderophores."

Bacteria studied in the experiment came from recurrent UTI patients treated at the University of Washington. Researchers cultured both E. coli from stool samples and urine samples. They found that the strains from urine made more yersiniabactin and salmochelin, two siderophores that help bacteria scavenge iron to support their own survival.

Iron is an important nutrient typically kept under tight control by the host, and there's evidence that a back-and-forth contest centered on iron has been raging for millennia between disease-causing microbes and the hosts they exploit. For example, studies suggest that humans may make a protein that specifically blocks particular bacterial siderophores.

There may be multiple ways to take advantage of the infectious bacterial strains' reliance on siderophores. Researchers will try to block or disrupt the activity of the proteins that make siderophores, but they also may use what Henderson calls a "Trojan horse" strategy.

"To steal iron, siderophores have to be sent out from the cell, bind to the iron, and then be taken back into the cell," he explains. "If we can design an antibiotic that looks like a siderophore, we might be able to trick only disease-causing bacteria into taking up the drug while leaving other bacteria alone."

Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathogens 5(2): e1000305. doi:10.1371/journal.ppat.1000305

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>