Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria talk to each other and our cells

07.11.2012
Bacteria can talk to each other via molecules they themselves produce. The phenomenon is called quorum sensing, and is important when an infection propagates. Now, researchers at Linköping University in Sweden are showing how bacteria control processes in human cells the same way.
The results are being published in PLOS Pathogens with Elena Vikström, researcher in medical microbiology, as the main author.

When the announcement goes out, more and more bacteria gather at the site of the attack – a wound, for example. When there are enough of them, they start acting like multicellular organisms. They can form biofilms, dense structures with powers of resistance against both antibiotics and the body’s immune defence system.
At the same time, they become more aggressive and increase their mobility. All these changes are triggered when the communication molecules – short fatty acids with the designation AHL – fasten to receptors inside the bacterial cells; as a consequence various genes are turned on and off.

AHL can wander freely through the cell membrane, not just in bacterial cells but also our own cells, which can be influenced to change their functions. In low concentrations white blood cells, for example, can be more flexible and effective, but in high concentrations the opposite occurs, which weakens our immune defences and opens the door for progressive infections and inflammations.

A team at Linköping University is the first research group in the world to show how AHL can influence their host cells. Using biochemical methods, the researchers have identified a protein designated IQGAP, which they single out as the recipient of the bacteria’s message, and something of a double agent.

“The protein can both listen in on the bacteria’s communication and change the functions in its host cells,” Vikström says.

Their laboratory studies were carried out on human epithelial cells from the intestines, which were mixed with AHL of the same type produced by Pseudomonas aeruginosa, a tough bacterium that causes illnesses in places like the lungs, intestines, and eyes. With the help of mass spectrometry, they have been able to see which proteins bind AHL.

“We have proof that physical contact between bacteria and epithelial cells is not always required; the influence can happen at a distance,” Vikström says.

The team’s discovery can open the door to new strategies for treatment where antibiotics cannot help. One possibility is designing molecules that bind to the receptor and block the signal path for the bacteria – something like putting a stick in a lock so the key won’t go in. It’s a strategy that could work with cystic fibrosis, for example, an illness where sticky mucus made of bacterial biofilm and large amounts of white blood cells is formed in the airways.

Article: The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration by T Karlsson, M V Turkina, O Yakymenko, K-E Magnusson and E Vikström. PLOS Pathogens Vol 8 issue 10, October 2012.

Contact:
Elena Vikström, PhD, +46 (0)10 1032054, elena.vikstrom@liu.se

Elena Vikström | EurekAlert!
Further information:
http://www.liu.se

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>