Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria talk to each other and our cells

07.11.2012
Bacteria can talk to each other via molecules they themselves produce. The phenomenon is called quorum sensing, and is important when an infection propagates. Now, researchers at Linköping University in Sweden are showing how bacteria control processes in human cells the same way.
The results are being published in PLOS Pathogens with Elena Vikström, researcher in medical microbiology, as the main author.

When the announcement goes out, more and more bacteria gather at the site of the attack – a wound, for example. When there are enough of them, they start acting like multicellular organisms. They can form biofilms, dense structures with powers of resistance against both antibiotics and the body’s immune defence system.
At the same time, they become more aggressive and increase their mobility. All these changes are triggered when the communication molecules – short fatty acids with the designation AHL – fasten to receptors inside the bacterial cells; as a consequence various genes are turned on and off.

AHL can wander freely through the cell membrane, not just in bacterial cells but also our own cells, which can be influenced to change their functions. In low concentrations white blood cells, for example, can be more flexible and effective, but in high concentrations the opposite occurs, which weakens our immune defences and opens the door for progressive infections and inflammations.

A team at Linköping University is the first research group in the world to show how AHL can influence their host cells. Using biochemical methods, the researchers have identified a protein designated IQGAP, which they single out as the recipient of the bacteria’s message, and something of a double agent.

“The protein can both listen in on the bacteria’s communication and change the functions in its host cells,” Vikström says.

Their laboratory studies were carried out on human epithelial cells from the intestines, which were mixed with AHL of the same type produced by Pseudomonas aeruginosa, a tough bacterium that causes illnesses in places like the lungs, intestines, and eyes. With the help of mass spectrometry, they have been able to see which proteins bind AHL.

“We have proof that physical contact between bacteria and epithelial cells is not always required; the influence can happen at a distance,” Vikström says.

The team’s discovery can open the door to new strategies for treatment where antibiotics cannot help. One possibility is designing molecules that bind to the receptor and block the signal path for the bacteria – something like putting a stick in a lock so the key won’t go in. It’s a strategy that could work with cystic fibrosis, for example, an illness where sticky mucus made of bacterial biofilm and large amounts of white blood cells is formed in the airways.

Article: The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration by T Karlsson, M V Turkina, O Yakymenko, K-E Magnusson and E Vikström. PLOS Pathogens Vol 8 issue 10, October 2012.

Contact:
Elena Vikström, PhD, +46 (0)10 1032054, elena.vikstrom@liu.se

Elena Vikström | EurekAlert!
Further information:
http://www.liu.se

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>