Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria Seek to Topple the Egg as Top Flu Vaccine Tool

Only the fragile chicken egg stands between Americans and a flu pandemic that would claim tens of thousands more lives than are usually lost to the flu each year.

Vaccine production hinges on the availability of hundreds of millions of eggs – and even with the vaccine, flu still claims somewhere around 36,000 lives in the United States during a typical year. Now scientists have taken an important step toward ending the dominance of the oval.

In a paper published in the Dec. 6 issue of the journal Vaccine, scientists showed that an experimental flu vaccine grown entirely in bacteria – a process that bypasses the egg completely – works well in people, triggering an immune response that would protect them against the flu.

The study of 128 healthy people ages 18 to 49 at the University of Rochester Medical Center was led by John Treanor, M.D., an expert on flu vaccines who has helped lead efforts to create and test new ways to make flu vaccine more quickly and less expensively. The vaccine – which is free of bacteria itself – is made by New Jersey-based VaxInnate Inc., which funded the study.

“There are a number of problems with using eggs to produce flu vaccine,” said Treanor. “It’s a very specialized product. It’s hard to make more eggs in a hurry – you only get them as fast as hens lay them. They’re not easy to manipulate, and it can be challenging to get the flu virus to grow within an egg. The flu vaccine system would be more flexible and reliable if we didn’t have to rely on them.”

Scientists have been exploring a number of alternatives to eggs – creating doses to cover just the U.S. population requires millions of eggs that, if laid end to end, would just about encircle the continental United States.

Bacteria have not been high on the list of options, even though they have the capability of producing vaccine more quickly and less expensively than many other methods. Most efforts to use bacteria have faltered due to basic differences in the way that bacteria process proteins compared to more complex eukaryotic cells, which have a nucleus. Proteins are a crucial component of flu vaccine, and keeping the key proteins folded correctly has been a challenge in bacteria, which lack cellular machinery critical to the process.

“It was long accepted as dogma that you could not make a flu vaccine in bacteria that could stimulate a protective immune response in humans,” said Treanor. “But in this vaccine, the surface flu protein hemagglutinin was made by E.coli in such a way that it folded correctly, stimulating an authentic immune response. It’s almost surprising that this is possible.”

VaxInnate addressed the problem by focusing on just one small key protein of hemagglutinin that can be correctly refolded after synthesis in bacteria. The small protein is enough to spur the immune system because it was attached to an adjuvant – a compound designed to strengthen the vaccine by stimulating a more robust immune response. Adjuvants currently are not part of U.S. flu vaccines, though they are used in other countries and as parts of other vaccines. Usually, adjuvants are simply mixed into a vaccine, but the latest work offers a new method. A bacterial protein called flagellin was actually fused to a molecule that mimics the flu’s hemagglutinin protein – a combination designed both to draw the attention of the immune system and immediately amplify it in one step.

The amount of material in the experimental flu shot under study is just a fraction of the amount used in a licensed flu shot. The most successful tests were done with one or two micrograms of vaccine, much smaller than today’s licensed 15-microgram shot. About half of participants got a strong immune response at 1 microgram, and about 80 percent got a strong immune response at 2 micrograms.

Also taking part in the study from the Medical Center were Christine Hay, M.D., assistant professor of Medicine; nurse practitioner Carrie Nolan; and technician Theresa Fitzgerald. Authors from VaxInnate included David Taylor, Lynda Tussey, Ge Liu, Uma Kavita, Langzhou Song, and Alan Shaw.

For Media Inquiries:
Tom Rickey
(585) 275-7954
Email Tom Rickey

Tom Rickey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>