Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria pack their own demise

03.08.2009
Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them.

After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating mechanism of the proteins involved.

This clears the road for finding ways to set the clock on this internal time bomb and, hopefully, in the process developing a new class of antibiotics. The research was accepted for publication by top journal Molecular Cell, with congratulations from the editorial board.

It's in the genes

For years, Nathalie De Jonge, Remy Loris and their colleagues of the VIB Department of Molecular and Cellular Interactions at VUB, have applied their relentless dedication to the study of the precise structure and function of the toxin-antitoxin complex, a system that had not been the focus of much interest in the past. Only in the last couple of years the rest of the scientific world come to realize its importance and as a result the number of papers in this field has exploded.

All living creatures, people as well as bacteria, store their genetic information in the same way, i.e. in the DNA. Every human cell contains 46 neatly folded DNA strands that together measure two meters, while bacteria have to make do with around one millimetre of DNA. A piece of DNA containing the recipe for one characteristic, such as "how to make citric acid" or "how to make hair curl," is called a gene. Humans have several tens of thousands of genes.

Toxin and antitoxin

If your genetic information becomes damaged, you have a good chance of becoming ill or even dying. This is also true for bacteria, which over time developed a handy way of providing extra protection to important genes – the toxin-antitoxin (T-A) system. These T-A genes are tucked in near the genes to be protected. T-A genes contain instructions for both a toxin and its antitoxin. As long as the cell is producing both, all is well. However, if for some reason the piece of DNA where the T-A gene is located gets damaged or lost, the production of toxin and antitoxin comes to a halt and a time bomb starts ticking. Because the toxin is more stable than the antitoxin, it is broken down more slowly by the cell's clean-up mechanisms. Once the antitoxin is all gone, there is still enough toxin left to kill the bacterium. The upshot for the species is that bacteria that loses their T-A gene – and probably have sustained damage to the important genes just next to it – can no longer reproduce.

Our best-known intestinal residents, Escherichia coli bacteria, more commonly known as E.coli, have such a T-A system in five different locations in their DNA, while Mycobacterium tuberculosis bacteria even have them in 60 locations.

A difficult feat

The T-A mechanism has been known for a while, but nobody clearly understood the workings of the proteins carrying out the instructions of the T-A gene. The VIB researchers clarified in detail both the appearance of the toxin and antitoxin, the mechanism of their interaction and the forms they take while in action – a difficult feat to pull off, requiring the simultaneous use of a whole range of different technologies. One of the difficulties for instance lay in the fact that part of the antitoxin lacks a fixed structure. This formlessness keeps it from being brought into view.

Future

Now that we finally know how the time bomb functions (or more exactly, one of the time bombs, as there are several closely related T-A systems), biomedical scientists can start looking for substances to start the time bomb of pathogens ticking, i.e. substances that imitate the toxin protein, block the antitoxin protein, or disrupt the interaction between the toxin and antitoxin. In time, a new class of antibiotics might come out of it – though Nature mostly has a countermove up its sleeve against any move scientists do.

Pieter Van Dooren | EurekAlert!
Further information:
http://www.vib.be

Further reports about: DNA DNA strand Escherichia coli Molecular Target T-A VIB VUB bacteria genetic information

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>