Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria pack their own demise

03.08.2009
Numerous pathogens contain an 'internal time bomb', a deadly mechanism that can be used against them.

After years of work, VIB researchers at the Vrije Universiteit Brussel (VUB) were able to determine the structure and operating mechanism of the proteins involved.

This clears the road for finding ways to set the clock on this internal time bomb and, hopefully, in the process developing a new class of antibiotics. The research was accepted for publication by top journal Molecular Cell, with congratulations from the editorial board.

It's in the genes

For years, Nathalie De Jonge, Remy Loris and their colleagues of the VIB Department of Molecular and Cellular Interactions at VUB, have applied their relentless dedication to the study of the precise structure and function of the toxin-antitoxin complex, a system that had not been the focus of much interest in the past. Only in the last couple of years the rest of the scientific world come to realize its importance and as a result the number of papers in this field has exploded.

All living creatures, people as well as bacteria, store their genetic information in the same way, i.e. in the DNA. Every human cell contains 46 neatly folded DNA strands that together measure two meters, while bacteria have to make do with around one millimetre of DNA. A piece of DNA containing the recipe for one characteristic, such as "how to make citric acid" or "how to make hair curl," is called a gene. Humans have several tens of thousands of genes.

Toxin and antitoxin

If your genetic information becomes damaged, you have a good chance of becoming ill or even dying. This is also true for bacteria, which over time developed a handy way of providing extra protection to important genes – the toxin-antitoxin (T-A) system. These T-A genes are tucked in near the genes to be protected. T-A genes contain instructions for both a toxin and its antitoxin. As long as the cell is producing both, all is well. However, if for some reason the piece of DNA where the T-A gene is located gets damaged or lost, the production of toxin and antitoxin comes to a halt and a time bomb starts ticking. Because the toxin is more stable than the antitoxin, it is broken down more slowly by the cell's clean-up mechanisms. Once the antitoxin is all gone, there is still enough toxin left to kill the bacterium. The upshot for the species is that bacteria that loses their T-A gene – and probably have sustained damage to the important genes just next to it – can no longer reproduce.

Our best-known intestinal residents, Escherichia coli bacteria, more commonly known as E.coli, have such a T-A system in five different locations in their DNA, while Mycobacterium tuberculosis bacteria even have them in 60 locations.

A difficult feat

The T-A mechanism has been known for a while, but nobody clearly understood the workings of the proteins carrying out the instructions of the T-A gene. The VIB researchers clarified in detail both the appearance of the toxin and antitoxin, the mechanism of their interaction and the forms they take while in action – a difficult feat to pull off, requiring the simultaneous use of a whole range of different technologies. One of the difficulties for instance lay in the fact that part of the antitoxin lacks a fixed structure. This formlessness keeps it from being brought into view.

Future

Now that we finally know how the time bomb functions (or more exactly, one of the time bombs, as there are several closely related T-A systems), biomedical scientists can start looking for substances to start the time bomb of pathogens ticking, i.e. substances that imitate the toxin protein, block the antitoxin protein, or disrupt the interaction between the toxin and antitoxin. In time, a new class of antibiotics might come out of it – though Nature mostly has a countermove up its sleeve against any move scientists do.

Pieter Van Dooren | EurekAlert!
Further information:
http://www.vib.be

Further reports about: DNA DNA strand Escherichia coli Molecular Target T-A VIB VUB bacteria genetic information

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>