Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria network for food


Bacteria connect to each other and exchange nutrients

It is well-known that bacteria can support each others’ growth and exchange nutrients. Scientists at the Max Planck Institute for Chemical Ecology in Jena, Germany, and their colleagues at the universities of Jena, Kaiserslautern, and Heidelberg, however, have now discovered a new way of how bacteria can achieve this nutritional exchange. They found that some bacteria can form nanotubular structures between single cells that enable a direct exchange of nutrients.

Electron micrograph of genetically modified Acinetobacter baylyi and Escherichia coli strains. The bacteria exchange amino acids via nanotubes (i.e. tube-like connections between cells).

© Universitätsklinikum Jena/Martin Westermann

Bacteria usually live in species-rich communities and frequently exchange nutrients and other metabolites. Until now, it was unclear whether microorganisms exchange metabolites exclusively by releasing them into the surrounding environment or whether they also use direct connections between cells for this purpose.

Scientists from the Research Group Experimental Ecology and Evolution at the Max Planck Institute for Chemical Ecology in Jena, Germany addressed this question using the soil bacterium Acinetobacter baylyi and the gut microbe Escherichia coli. By experimentally deleting bacterial genes from the genome of both species, the scientists generated mutants that were no longer able to produce certain amino acids, yet produced increased amounts of others.

In co-culture, both bacterial strains were able to cross-feed each other, thereby compensating the experimentally induced deficiencies. However, separating the two bacterial strains with a filter that allowed free passage of amino acids, yet prevented a direct contact between cells, abolished growth of both strains. “This experiment showed that a direct contact between cells was required for the nutrient exchange to occur,” explains Samay Pande, who recently obtained his PhD at the Max Planck Institute in Jena on this research project and now started a postdoc at the ETH Zürich.

Observing the co-culture under the electron microscope revealed structures that formed between bacterial strains, which functioned as nanotubes and enabled the exchange of nutrients between cells. Especially remarkable, however, was the fact that only the gut microbe Escherichia coli was capable of forming these structures and connecting to Acinetobacter baylyi or other E. coli cells.

“The major difference between both species is certainly that E. coli is able to actively move in liquid media, whereas A. baylyi is immotile. It may thus be possible that swimming is required for E. coli to find suitable partners and connect to them via nanotubes,” explains Christian Kost, head of the Research Group Experimental Ecology and Evolution, which is funded by the Volkswagen Foundation.

“A lack of amino acids triggered the formation of nanotubes. Deleting a gene, which is involved in the production of a certain amino acid, caused the resulting bacteria to connect to other bacterial cells and − in this way − compensate their nutritional deficiency. However, nanotubes did not form when the required amino acids were supplemented to the growth medium, indicating that the formation of these structures obviously depends on how ‘hungry’ a cell is,” the scientist summarizes the results.

Cells that specialize on particular biochemical processes and thereby divide their labor can be advantageous for bacterial communities: Resources can be used more economically, thus enhancing growth and efficiency.

Whether the formation of nanotubes exclusively serves the mutual exchange of nutrients or whether some bacterial species also parasitize other bacterial cells in this way will be subject to further investigation. Moreover, it remains unclear whether bacteria can actively choose the cells to which they attach. After all, such tubular connections also pose a potential risk, because the partner on the other side of the tube could also provide harmful substances.

“To me, the most exciting question that remains to be answered is whether bacteria are in fact unicellular and relatively simply structured organisms or whether we are actually looking at some other type of multicellularity, in which bacteria increase their complexity by attaching to each other and combining their biochemical abilities,” Christian Kost summarizes.

His research focuses mainly on the question why organisms cooperate with each other. Using bacterial communities as experimentally tractable model systems will help to explain why so many organisms have developed a cooperative lifestyle in the course of their evolution.


Dr. Christian Kost
Max Planck Institute for Chemical Ecology, Jena
Phone: +49 3641 571212


Angela Overmeyer M.A.
Press Office

Max Planck Institute for Chemical Ecology, Jena
Phone: +49 3641 57-2110


Original publication
Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., Bischofs, I. B., Kost, C. (2015)

Metabolic cross-feeding via intercellular nanotubes among bacteria
Nature Communications

Dr. Christian Kost | Max Planck Institute for Chemical Ecology, Jena

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>