Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria Make Thrift a Habit

In these lean times, smart consumers refuse to pay a lot for throwaway items, but will shell out a little more for products that can be used again and again. The same is true of bacteria and other microbes, researchers at the University of Michigan have learned.

These organisms "spend" more on proteins that will be used and recycled internally than on proteins that are secreted from the cell and lost to the environment, said graduate student Daniel Smith, lead author of a paper published online in the open access journal mBio.

Proteins are made up of building blocks called amino acids, which vary in size, complexity and chemical characteristics. These differences make some amino acids cheaper for cells to produce than others. Proteins made of mostly cheap amino acids are therefore less costly to the organism than are proteins composed of more energetically expensive amino acids. This much is obvious, but the connection between a protein's location and its expense has not been appreciated until now.

Smith became interested in protein economics while studying a bacterial protein called CsgA, a major component of curli (fibers that decorate the surfaces of E. coli and certain other bacteria and are thought to be involved in causing illness). CsgA is rich in glycine, a cheaply produced amino acid, so CsgA also should be inexpensive for bacteria to produce. But exactly how cheap?

To find out, Smith and co-author Matthew Chapman, an associate professor of molecular, cellular and developmental biology, first looked up previously tallied synthetic costs of all amino acids found in proteins. They used those figures to calculate the total cost of each E. coli protein; then for each protein, they divided total cost by the number of amino acid subunits in the protein to arrive at an average cost.

"When we compared all the proteins in E. coli, we found that CsgA was an outlier," Smith said. "It was one of the cheapest to produce."

That finding makes sense from the bacterium's point of view.

"If you're making lots of curli fibers outside your cell, that's going to be a huge economic cost," Smith said. "If you can reduce that cost, then you can out-compete your neighbors---you're better adapted."

Although most of E. coli's proteins are internal, the results showed that the majority of its cheap proteins are found on the outside. Again, this makes biological sense, Smith said.

"Bacteria are secretion machines," he said. "They're very good at getting proteins out of the cell. But they have no import system. They're very bad at getting proteins back in. So when they secrete proteins, they lose resources."

Smith and Chapman checked their results by using several different measures---chemical energy, mass, carbon content---to calculate protein cost. The conclusion was always the same: extracellular proteins are more economical. In fact, a protein's location is a better predictor of its economy than its abundance, function or size.

The bugs' thrifty ways add up to big savings. Looking just at the proteins found in the flagellum---a tail-like, rotating external structure that some bacteria use to propel themselves through liquids---Smith and Chapman calculated that the energy saved is enough to rotate the flagellum for 24 minutes.

"Considering the expected doubling time of an E. coli cell, that is like getting free fuel for life," Smith said.

E. coli, it turns out, is not the only microbial miser. The researchers performed similar protein economy calculations for a wide range of bacteria, as well as for yeast, and found the same trend: proteins secreted to the extracellular environment are made up of cheaper-to-produce parts than are proteins found inside the cell.

Of course, it isn't individual bacteria and yeast that are deciding what to spend on the proteins they produce. Their tightwad tendencies have been shaped by natural selection.

"Evolution has to balance function and cost," Chapman said. "Function is most important---if an organism makes a cheap protein that doesn't function efficiently, that's a waste. But if an amino acid substitution reduces metabolic cost without affecting function, that will improve the organism's evolutionary fitness."

The research was funded by the National Institutes of Health.

Daniel Smith:

Matthew Chapman:


EDITORS: A photo is available at

| Newswise Science News
Further information:

Further reports about: CsgA E. coli amino acid bacteria cellular protein microbial miser proteins

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>