Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How bacteria make syringes

For a successful infection, bacteria must outwit the immune system of the host. To this aim, they deliver so-called virulence factors through a transport channel located in the bacterial membrane.
In some bacteria this transport channel is formed like a syringe, enabling them to inject virulence factors directly into the host cell. Scientists from the Max Planck Society and the Federal Institute for Materials Research and Testing have now succeeded for the first time in elucidating basic principles of the assembly of this transport channel. This is an important starting point for the development of new drugs that might interfere considerably earlier than antibiotics in the course of infection. (Nature Structural & Molecular Biology, 13 June 2010)

Every day the human organism is confronted with a huge variety of pathogens (fig. 1). Most of them are fended off by our immune system. To execute a successful infection, bacteria must therefore manipulate the host to ensure their survival. They secrete virulence factors through a transport channel located in the bacterial membrane. Some bacteria, such as the causative agents of dysentery, food poisoning, typhoid fever, and pest, have developed a specialized transport mechanism called the Type three secretion system. Electron microscopy reveals that this structure is formed like a syringe: the base of the syringe is imbedded in the bacterial membrane and the needle protrudes out of the bacteria (fig. 2). With this apparatus bacteria can inject virulence factors directly into the host cell.
So far, little has been known about how bacteria build this nano-syringe. Scientists from the Max Planck Institute for Infection Biology in Berlin, the Max Planck Institute for Biophysical Chemistry in Göttingen, and the Federal Institute for Materials Research and Testing have now succeeded in elucidating fundamental principles of the needle assembly. This was made possible by reconstitution experiments which allowed them to study the assembly of proteins into a needle in the test tube (fig. 3).

The close observation of these events revealed how the proteins are assembled into a syringe: the bacterium synthesizes the proteins in the cell interior, transports them through the syringe to the outside, and stacks them one after the other onto the tip of the growing needle. The scientists could also show that the proteins change their three-dimensional structure during the assembly process. They were able to pinpoint the exact structural changes down to the single amino acid level. These results open new perspectives in the development of medicines that might interfere in the course of infection much earlier than antibiotics. These so-called anti-infectives could inhibit the assembly of the needle and the injection of virulence factors into the host cell. This would be a major advantage over antibiotics, which have to travel through the membrane into the bacteria to be able to kill it. Furthermore, antibiotics cannot distinguish between good and evil, i.e. disease-causing, bacteria, often leading to unwanted side effects. Lastly, the use of anti-infectives would circumvent the problem of antibiotic resistance development.

Shigella flexneri, the causative agent of dysentery (orange), establishes contact with a human host cell (blue). The bar corresponds to a micrometer or a thousandth millimeter, respectively. Credit: Volker Brinkmann, Diane Schad, and Michael Kolbe

You can clearly see the two membranes (orange) enclosing the cell interior (blue) and the needles protruding to the outside (orange, marked in blue). The bar corresponds to a micrometer or a thousandth millimeter, respectively. Credit: Ulrike Abu Abed, Diane Schad, and Michael Kolbe

The change of the three-dimensional structure of the proteins during the needle assembly was analyzed by X-ray structural experiments at BESSY in Berlin and ESRF in Grenoble and NMR-spectroscopic experiments based on radio waves at the Max Planck Institute for Biophysical Chemistry. The scientists compared the three-dimensional structure of the needle protein before and after the needle assembly.

Original paper:
Ömer Poyraz, Holger Schmidt, Karsten Seidel, Friedmar Delissen, Christian Ader, Hezi Tenenboim, Christian Goosmann, Britta Laube, Andreas F. Thünemann, Arturo Zychlinsky, Marc Baldus, Adam Lange, Christian Griesinger, and Michael Kolbe:
Protein refolding is required for assembly of the Type three secretion needle
Nature Structural & Molecular Biology, 13 June 2010

Michael Kolbe | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>



Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

More VideoLinks >>>