Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria-killing proteins cover blood type blind spot

15.02.2010
A set of proteins found in our intestines can recognize and kill bacteria that have human blood type molecules on their surfaces, scientists at Emory University School of Medicine have discovered.

The results were published online Feb. 14 and are scheduled to appear in the journal Nature Medicine.

Many immune cells have receptors that respond to molecules on the surfaces of bacteria, but these proteins are different because they recognize structures found on our own cells, says senior author Richard D. Cummings, PhD, professor and chair of the Department of Biochemistry. "It's like having a platoon in an army whose sole purpose is to track down enemy soldiers that are wearing the home country's uniforms."

Blood type comes from differences in sugar molecules attached to proteins on red blood cells. If incompatible blood types are mixed, the antibodies from one person will make red blood cells from the other person clump together, with devastating results in an emergency. But someone's immune system usually doesn't make antibodies to the sugar molecules on his or her own red blood cells. That creates a potential blind spot that bacteria could exploit.

For example, a strain of E. coli (O86) has molecules on its surface like those in humans with blood type B. People with blood type B are unable to produce antibodies against E. coli O86. Although O86 is known to infect birds, it's not a major danger like other types of E. coli, some of which can cause severe diarrhea.

Cummings and his colleagues wanted to know why more bacteria haven't adopted the tactics of E. coli O86 to get around the immune system. Searching for proteins that could bind to the sugar molecules characteristic of blood types A and B, graduate students Sean Stowell, PhD, and Connie Arthur identified proteins called galectin-4 and galectin-8.

"These proteins are separate from antibodies and other parts of the immune system," Cummings says. "They kill bacteria like E. coli O86 all by themselves within a couple of minutes."

When E. coli O86 is exposed to these proteins and viewed by electron microscopy, "it looks as if somebody is tearing away at their outer membranes," he adds.

However, galectins-4 and -8 did not kill human red blood cells expressing blood group antigens. High levels of lactose (milk sugar) can inhibit the lethal activity of these galactins, whereas sucrose (cane sugar) does not.

"This raises the question of whether there are dietary effects, as from milk sugars or other dietary polysaccharides, that might inhibit activity of these galectins on intestinal microbes and their proliferation and colonization," Cummings says.

Cummings notes the unique properties of galectins-4 and -8 may provide an explanation for why the human population has such a diversity of sugar molecules on blood cells. The diversity may ensure that some part of the population might be able to fend off a bacterial infection. For example, ABO blood type seems to affect susceptibility to Helicobacter pylori, a bacterium linked to ulcers.

Galectins were thought to have evolved long before "adaptive immunity," the part of vertebrates' immune systems that is responsible for producing a variety of antibodies. Galectins may have allowed the generation of a diverse group of blood type sugar molecules in human tissues as a safe set of molecules to evolve because immunity is backstopped by galectins, Cummings says.

Galectins-4 and-8 were also able to kill another variety of E. coli that display a sugar molecule found on many mammalian cells, although more protein was needed. That leads to a question Cummings and his colleagues are investigating now: What else do galectins recognize, and how does that constrain the kinds of bacteria that can live in our intestines? In addition, it may now be possible, given these results, to engineer molecular changes in these galectins to allow them to kill other types of pathogenic bacteria that display other types of sugar molecules on their surface. Such developments could lead to new types of antibiotics for pathogenic microbes.

The research was supported by the National Institute of General Medical Sciences of the National Institutes of Health and the Consortium for Functional Glycomics and also involved key contributions from Marcelo Dias-Baruffi, PhD, and colleagues at the Universidade de São Paolo in Ribeirão Preto, Brazil.

Reference: S.R. Stowell et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, page numbers (2010).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com - @emoryhealthsci (Twitter) - http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>