Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria-killing proteins cover blood type blind spot

A set of proteins found in our intestines can recognize and kill bacteria that have human blood type molecules on their surfaces, scientists at Emory University School of Medicine have discovered.

The results were published online Feb. 14 and are scheduled to appear in the journal Nature Medicine.

Many immune cells have receptors that respond to molecules on the surfaces of bacteria, but these proteins are different because they recognize structures found on our own cells, says senior author Richard D. Cummings, PhD, professor and chair of the Department of Biochemistry. "It's like having a platoon in an army whose sole purpose is to track down enemy soldiers that are wearing the home country's uniforms."

Blood type comes from differences in sugar molecules attached to proteins on red blood cells. If incompatible blood types are mixed, the antibodies from one person will make red blood cells from the other person clump together, with devastating results in an emergency. But someone's immune system usually doesn't make antibodies to the sugar molecules on his or her own red blood cells. That creates a potential blind spot that bacteria could exploit.

For example, a strain of E. coli (O86) has molecules on its surface like those in humans with blood type B. People with blood type B are unable to produce antibodies against E. coli O86. Although O86 is known to infect birds, it's not a major danger like other types of E. coli, some of which can cause severe diarrhea.

Cummings and his colleagues wanted to know why more bacteria haven't adopted the tactics of E. coli O86 to get around the immune system. Searching for proteins that could bind to the sugar molecules characteristic of blood types A and B, graduate students Sean Stowell, PhD, and Connie Arthur identified proteins called galectin-4 and galectin-8.

"These proteins are separate from antibodies and other parts of the immune system," Cummings says. "They kill bacteria like E. coli O86 all by themselves within a couple of minutes."

When E. coli O86 is exposed to these proteins and viewed by electron microscopy, "it looks as if somebody is tearing away at their outer membranes," he adds.

However, galectins-4 and -8 did not kill human red blood cells expressing blood group antigens. High levels of lactose (milk sugar) can inhibit the lethal activity of these galactins, whereas sucrose (cane sugar) does not.

"This raises the question of whether there are dietary effects, as from milk sugars or other dietary polysaccharides, that might inhibit activity of these galectins on intestinal microbes and their proliferation and colonization," Cummings says.

Cummings notes the unique properties of galectins-4 and -8 may provide an explanation for why the human population has such a diversity of sugar molecules on blood cells. The diversity may ensure that some part of the population might be able to fend off a bacterial infection. For example, ABO blood type seems to affect susceptibility to Helicobacter pylori, a bacterium linked to ulcers.

Galectins were thought to have evolved long before "adaptive immunity," the part of vertebrates' immune systems that is responsible for producing a variety of antibodies. Galectins may have allowed the generation of a diverse group of blood type sugar molecules in human tissues as a safe set of molecules to evolve because immunity is backstopped by galectins, Cummings says.

Galectins-4 and-8 were also able to kill another variety of E. coli that display a sugar molecule found on many mammalian cells, although more protein was needed. That leads to a question Cummings and his colleagues are investigating now: What else do galectins recognize, and how does that constrain the kinds of bacteria that can live in our intestines? In addition, it may now be possible, given these results, to engineer molecular changes in these galectins to allow them to kill other types of pathogenic bacteria that display other types of sugar molecules on their surface. Such developments could lead to new types of antibiotics for pathogenic microbes.

The research was supported by the National Institute of General Medical Sciences of the National Institutes of Health and the Consortium for Functional Glycomics and also involved key contributions from Marcelo Dias-Baruffi, PhD, and colleagues at the Universidade de São Paolo in Ribeirão Preto, Brazil.

Reference: S.R. Stowell et al. Innate immune lectins kill bacteria expressing blood group antigen. Nat. Med. 16, page numbers (2010).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has $2.3 billion in operating expenses, 18,000 employees, 2,500 full-time and 1,500 affiliated faculty, 4,500 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: - @emoryhealthsci (Twitter) -

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>