Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria-invading virus yields new discoveries

Innovative work by two Florida State University scientists that shows the structural and DNA breakdown of a bacteria-invading virus is being featured on the cover of the February issue of the journal Virology.

Kathryn Jones and Elizabeth Stroupe, both assistant professors in the Department of Biological Science, have deconstructed a type of virus called a bacteriophage, which infects bacteria. Their work will help researchers in the future have a better understanding of how the virus invades and impacts bacteria, and could be particularly useful for the agriculture industry.

"It turns out there are a lot of novel things about it," Jones said.

Until now, there was little known about this particular bacteriophage, called the ?M12, which infects a nitrogen-fixing bacterium called Sinorhizobium meliloti.

Jones focused on the sequencing the DNA of ?M12 and analyzing its evolutionary context, while Stroupe looked at its overall physical structure.

"The bacteriophage is really just a tool for studying the bacterium," Stroupe said. "No one thought to sequence it before."

That tool, Stroupe said, will give scientists more insight into the basic functions of the ?M12 bacteriophage. ?M12 is the first reported bacteriophage to have its particular combination of DNA sequences and the particular shape of its protein shell. Understanding both the DNA and structure can provide an understanding of the proteins a bacteriophage produces and how it chooses the bacteria it invades.

In the case of ?M12, this could be particularly useful in the future for the agriculture community and seed companies. Important crop plants depend on biological nitrogen fixation by the bacteria that is preyed upon by this phage. Nitrogen fixation is the process by which abundant nitrogen gas in the atmosphere is converted to the scarce soil resources ammonia and nitrate.

Jones and Stroupe's work, divided into two articles, will be featured on the cover of Virology. One, authored primarily by Jones and an undergraduate honors thesis student, Tess Brewer, focuses on the genetic makeup of the virus, while the other by Stroupe and colleagues, examines the physical structure.

Kathleen Haughney | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>