Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria integrate autotransporters into their outer membrane

23.09.2013
The bacterial outer envelope is densely packed with proteins that form small pores and facilitate the passage of nutrients, toxins and signaling molecules.

Professors Timm Maier and Sebastian Hiller from the Biozentrum of the University of Basel now demonstrate how these transporter proteins are integrated into the outer membrane.


Proposed mechanism how bacteria integrate autotransporter into their outer membrane. Left: protein structure of TamA, right: TamA with autotransporters (orange).

Using x-ray structural analysis they reveal the structure-function relationship of the protein TamA, which plays an important role in the assembly of transport proteins in the bacterial outer membrane. Their findings have been published recently in the renowned scientific journal «Nature Structural and Molecular Biology».

Shuttling proteins from inside the cell to the outside environment is a complex task for Gram-negative bacteria, which are not only surrounded by an inner membrane, but also by an outer membrane barrier for protection against adverse environmental conditions.

The bacteria however, can overcome this additional barrier by inserting special transport proteins into the protective outer membrane. In a joint project, Maier and Hiller, both Professors of Structural Biology at the Biozentrum of the University of Basel, provide mechanistic insights into this key process.

The structure of the assembly protein TamA explains its function

An important option for channeling protein domains across the outer membrane are so-called autotransporters. These membrane proteins form a barrel-like structure with a central pore, but they cannot autonomously transport their “passenger domain” across the outer membrane.

Specific assembly proteins are required for the folding and integration of autotransporters into the outer membrane. Employing x-ray crystallography, the authors of the study decoded the atomic structure of the autotransporter assembly protein TamA of the intestinal bacterium Escherichia Coli.

“The protein TamA”, explains Fabian Gruss, first author and recipient of a Werner-Siemens PhD fellowship, “also forms a barrel with a pore. The pore is closed to the outside by a lid but a particular kink in the barrel wall provides a gate for autotransporter substrates.” When an unfolded autotransporter is delivered, TamA hooks onto one end of the substrate polypeptide chain and integrates it step by step via the gate into its own barrel structure.

The TamA barrel is thus expanded; the pore widens and opens such that passenger substrates traverse to the exterior. The assembly process ends when TamA releases the autotransporter into the surrounding membrane. “The autotransporter insertion mechanism was previously completely enigmatic – for the first time, knowing the structure of TamA, we can now picture how assembly and translocation could function.”

Assembly process important for infections

Many pathogens, such as the diarrhea causing Yersinia, Salmonella or the Cholera pathogen, belong to the group of Gram-negative bacteria. With the help of the autotransporter, they release toxins or adhesive proteins to infect their host cells. In their study, Maier and Hiller provide completely new findings about membrane insertion of autotransporters as well as the translocation of their cargo.

Original Citation
Fabian Gruss, Franziska Zähringer, Roman P. Jakob, Björn M. Burmann, Sebastian Hiller, Timm Maier.
The structural basis of autotransporter translocation by TamA.
Nature Structural and Molecular Biology, Published online 23 September 2013
Further Information
Prof. Dr. Timm Maier, Biozentrum of the University of Basel, Tel.: +41 61 267 21 76,
E-Mail: timm.maier@unibas.ch
Prof. Dr. Sebastian Hiller, Biozentrum of the University of Basel, Tel.: +41 61 267 20 82, E-Mail: sebastian.hiller@unibas.ch

Weitere Informationen:

http://www.nature.com/nsmb/journal/vaop/ncurrent/abs/nsmb.2689.html - Abstract

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>