Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria help infants digest milk more effectively than adults

23.11.2010
Infants are more efficient at digesting and utilizing nutritional components of milk than adults due to a difference in the strains of bacteria that dominate their digestive tracts.

Researchers from the University of California, Davis, and Utah State University report on genomic analysis of these strains in the November 2010 issue of the journal Applied and Environmental Microbiology identifying the genes that are most likely responsible for this difference.

"Human milk oligosaccharides (HMOs) are the third-largest solid component of milk. Their structural complexity renders them non-digestible to the host," say the researchers. "Bifidobacterium longum strains often predominate the colonic microbiota of exlusively breast-fed infants. Among the three recognized subspecies, B. longum subsp. infantis achieves high levels of cell growth on HMOs and is associated with early colonization of the infant gut."

In the study the researchers used whole-genome microarray comparisons to associate genotypic biomarkers among 15 B. longum strains exhibiting various HMO utilization patterns. They identified 5 distinct gene clusters on B. longum that were conserved (showed little or no variation) across all strains capable of growth on HMOs and have also diverged in strains incapable of growing on HMOs.

The results of this study suggest that B. longum has at least 2 distinct subspecies: B. longum subsp. infantis, adapted to ultilize milk carbon and found primarily in the digestive tract of children, and B. longum subsp. longum, specialized for plant-derived carbon metabolism and associated with the adult digestive tract.

"Although early gut colonization is likely dependent on a multitude of dietary and nondietary factors, the delivery of complex oligosaccharides through milk creates an ideal and unique nutrient niche for the establishment of, and colonization by, B. longum subsp. infantis strains," say the researchers. "During weaning, a gradual transitioning from milk-based to plant-based diets generates a shift in carbon availability in the gastrintestinal tract favorable for the expansion and formtion of an adult-like gastointestinal tract microbiota."

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>