Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Expect the Unexpected

05.11.2009
Scientists observe the emergence of a new adaptation strategy to rapidly changing environmental conditions

Organisms ensure the survival of their species by genetically adapting to the environment. If environmental conditions change too rapidly, the extinction of a species may be the consequence. A strategy to successfully cope with such a challenge is the generation of variable offspring that can survive in different environments. Even though a portion of the offspring may have a decreased chance to survive, the survival of the species as a whole is guaranteed.


Within a generation, genetically identical offspring is produced that varies in the degree of adaptation to the current environment. Anticipating drastic changes of the environmental conditions in future, some variants have an increased chance to survive if the event occurs. This ensures the survival of the species as a whole. Hubertus J. E. Beaumont

For the first time scientists have now observed the evolution of such a strategy under lab conditions in an experiment with the bacterial species Pseudomonas fluorescens: A bacterial strain exposed to rapidly changing environmental conditions developed the ability to generate variable offspring without additional mutations. This new strategy ensured the survival of the bacterial strain.

The results were published in NATURE.

A popular saying already tells an interesting truth, when it recommends "not to put all your eggs in one basket", that is to say spread and hence reduce risks. Also in biology, such strategies are already known and referred to as "bet-hedging". In the process of evolution, bet-hedging is not the usual way of adapting to the environment, in which carriers of advantageous mutations prevail against other individuals that do not show these mutations. In fact, bet-hedging means that a generation produces offspring that is genetically identical, but differs in the ability to prosper in the current environments: Some offspring is optimally adapted to the current environment, while others thrive under completely different conditions. In case of rapid and drastic changes of the environment, the latter offspring is at an advantage and hence the species survives. The evolutionary advantage of the bet-hedging strategy increases, the more drastically and unpredictably the environmental conditions change. Such risk-spreading mechanisms are, for example, known from bacterial pathogens: By varying their cell surfaces, genetically identical pathogen cells escape the human immune system. Further examples of bet-hedging are known from the animal and plant kingdom.

Christian Kost, scientist at the Max Planck Institute for Chemical Ecology in Jena, Germany, has been working on this topic. Funded by the Alexander von Humboldt Foundation, he studied bacteria of the species Pseudomonas fluorescens at the New Zealand Institute for Advanced Study in Auckland. Due to their short generation time (cells divide every 52 minutes), these bacteria are particularly well suited to study evolution in the test tube. Moreover, the relatively small genome of these organisms facilitates the detection of new mutations.

Advantageous mutations become disadvantages

In their experiments the researchers exposed Pseudomonas strains alternately to unshaken or shaken culture media. Due to beneficial mutations in the genome, new variants emerged in both environments that had an advantage in either the "shaken" or "unshaken" environment. Once emerged, each new variant had to outcompete all other unmutated representatives of the ancestral strain. Under the assumption that one variant that differed in its outer appearance from its parent (for example smooth vs. rough surface) also must have outcompeted the parent strain, the most frequent representative of this new variant was picked and transferred to the respective other environment. Mutations that were advantageous in shaken media became disadvantageous in unshaken environments, and vice versa. As a consequence, new mutations and hence new variants evolved to compensate for this disadvantage. As soon as the bacteria adapted to one environment they were forced to readapt to the second one.

Bet-hedging: One genotype, several variants

The constant changes between shaken and unshaken media soon resulted in the development of types with the same genetic constitution (genotypes), which always produced two different variants. Once emerged, this was the ultimate survival strategy for the bet-hedging pseudomonades, for all other genotypes that produced new variants by mutation only had no chance to prevail against the bet-hedging variants.

Genetic analysis showed that both variants were absolutely identical on a genetic level. Furthermore, the bet-hedging genotype differed by nine mutations from the ancestral strain, with which the experiment had been started. Moreover, the final mutation in the series was causal for bet-hedging. "Our experiments provide evidence that risk-spreading is a very successful strategy to rapidly adapt to changing environments. If the same genotype generates several variants at the same time, it may survive major environmental changes", Christian Kost says. And Paul Rainey, principal investigator of the study at Massey University Auckland, adds: "The rapid and repeatable evolution of bet-hedging during our experiment suggests it may have been one of the earliest evolutionary solutions to life in constantly changing environments". [JWK/CK]

Citation:
Hubertus J. E. Beaumont, Jenna Gallie, Christian Kost, Gayle C. Ferguson, Paul B. Rainey: Experimental evolution of bet-hedging. NATURE. DOI: 10.1038/nature08504
Further Information:
Dr. Christian Kost
Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena (Germany); Tel.: +49 3641 57-1212; ckost@ice.mpg.de

Pictures: Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Jena (Germany); Tel.: +49 3641 57-2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

nachricht How the kidneys produce concentrated urine
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>