Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria Expect the Unexpected

05.11.2009
Scientists observe the emergence of a new adaptation strategy to rapidly changing environmental conditions

Organisms ensure the survival of their species by genetically adapting to the environment. If environmental conditions change too rapidly, the extinction of a species may be the consequence. A strategy to successfully cope with such a challenge is the generation of variable offspring that can survive in different environments. Even though a portion of the offspring may have a decreased chance to survive, the survival of the species as a whole is guaranteed.


Within a generation, genetically identical offspring is produced that varies in the degree of adaptation to the current environment. Anticipating drastic changes of the environmental conditions in future, some variants have an increased chance to survive if the event occurs. This ensures the survival of the species as a whole. Hubertus J. E. Beaumont

For the first time scientists have now observed the evolution of such a strategy under lab conditions in an experiment with the bacterial species Pseudomonas fluorescens: A bacterial strain exposed to rapidly changing environmental conditions developed the ability to generate variable offspring without additional mutations. This new strategy ensured the survival of the bacterial strain.

The results were published in NATURE.

A popular saying already tells an interesting truth, when it recommends "not to put all your eggs in one basket", that is to say spread and hence reduce risks. Also in biology, such strategies are already known and referred to as "bet-hedging". In the process of evolution, bet-hedging is not the usual way of adapting to the environment, in which carriers of advantageous mutations prevail against other individuals that do not show these mutations. In fact, bet-hedging means that a generation produces offspring that is genetically identical, but differs in the ability to prosper in the current environments: Some offspring is optimally adapted to the current environment, while others thrive under completely different conditions. In case of rapid and drastic changes of the environment, the latter offspring is at an advantage and hence the species survives. The evolutionary advantage of the bet-hedging strategy increases, the more drastically and unpredictably the environmental conditions change. Such risk-spreading mechanisms are, for example, known from bacterial pathogens: By varying their cell surfaces, genetically identical pathogen cells escape the human immune system. Further examples of bet-hedging are known from the animal and plant kingdom.

Christian Kost, scientist at the Max Planck Institute for Chemical Ecology in Jena, Germany, has been working on this topic. Funded by the Alexander von Humboldt Foundation, he studied bacteria of the species Pseudomonas fluorescens at the New Zealand Institute for Advanced Study in Auckland. Due to their short generation time (cells divide every 52 minutes), these bacteria are particularly well suited to study evolution in the test tube. Moreover, the relatively small genome of these organisms facilitates the detection of new mutations.

Advantageous mutations become disadvantages

In their experiments the researchers exposed Pseudomonas strains alternately to unshaken or shaken culture media. Due to beneficial mutations in the genome, new variants emerged in both environments that had an advantage in either the "shaken" or "unshaken" environment. Once emerged, each new variant had to outcompete all other unmutated representatives of the ancestral strain. Under the assumption that one variant that differed in its outer appearance from its parent (for example smooth vs. rough surface) also must have outcompeted the parent strain, the most frequent representative of this new variant was picked and transferred to the respective other environment. Mutations that were advantageous in shaken media became disadvantageous in unshaken environments, and vice versa. As a consequence, new mutations and hence new variants evolved to compensate for this disadvantage. As soon as the bacteria adapted to one environment they were forced to readapt to the second one.

Bet-hedging: One genotype, several variants

The constant changes between shaken and unshaken media soon resulted in the development of types with the same genetic constitution (genotypes), which always produced two different variants. Once emerged, this was the ultimate survival strategy for the bet-hedging pseudomonades, for all other genotypes that produced new variants by mutation only had no chance to prevail against the bet-hedging variants.

Genetic analysis showed that both variants were absolutely identical on a genetic level. Furthermore, the bet-hedging genotype differed by nine mutations from the ancestral strain, with which the experiment had been started. Moreover, the final mutation in the series was causal for bet-hedging. "Our experiments provide evidence that risk-spreading is a very successful strategy to rapidly adapt to changing environments. If the same genotype generates several variants at the same time, it may survive major environmental changes", Christian Kost says. And Paul Rainey, principal investigator of the study at Massey University Auckland, adds: "The rapid and repeatable evolution of bet-hedging during our experiment suggests it may have been one of the earliest evolutionary solutions to life in constantly changing environments". [JWK/CK]

Citation:
Hubertus J. E. Beaumont, Jenna Gallie, Christian Kost, Gayle C. Ferguson, Paul B. Rainey: Experimental evolution of bet-hedging. NATURE. DOI: 10.1038/nature08504
Further Information:
Dr. Christian Kost
Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena (Germany); Tel.: +49 3641 57-1212; ckost@ice.mpg.de

Pictures: Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Jena (Germany); Tel.: +49 3641 57-2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>