Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria disarmer activates fiber formation in Parkinson’s protein

16.02.2012
The same substance that hampers the infection capability of bacteria can hasten the fiber formation of the protein that is involved in the development of Parkinson’s disease.

The study shows how important basic research is to our understanding of possible side effects from drug candidates interacting with various target proteins.

The study was done by researchers at Umeå University in Sweden and is published in the latest issue of the prestigious Journal of the American Chemical Society. The findings surprise all the researchers involved.

Fredrik Almqvist, professor of organic chemistry, working with colleagues at Washington University in St. Louis and the University of Michigan in Ann Arbor, has developed a molecule, FN075, that slows down the infection capability of bacteria. This molecule blocks the growth and function of the hair-like shoots that bacteria use to cause infections. Even though the molecule is not used in any drugs today, this disarming principle could be of great importance in future struggles against resistance to antibiotics.

Interestingly, bacteria’s hair-like shoots are structured according to the same principle as amyloid proteins, improperly folded proteins that accumulate in nerve disorders like Parkinson’s and Alzheimer’s diseases.

“So we tested whether FN 075 could also hamper the formation of amyloids in a protein that is implicated in Parkinson’s disease. But instead it turned out that the molecule boosted the formation of amyloid structures,” says Pernilla Wittung-Stafshede, professor of biological chemistry.

In other words, the same tiny molecule can have exactly the opposite effect depending on what protein it encounters and in what surroundings. The study thus shows that it is important to test for possible side effects that new substances might have on amyloid proteins.

“There seems to be a fine balance between what activities these types of substances hamper and what activities they prompt,” says Pernilla Wittung-Stafshede.

She says it is too early to say whether the effects on the amyloid proteins are positive or negative from a medical perspective. On the other hand, it is clear that molecules like FN075 are key research tools to achieve an understanding of these types of complex processes.

The new findings have inspired the researchers regarding how to continue to design and use small molecules that can affect amyloid formation.

“Perhaps some of the body’s own small metabolites help to trigger amyloid formation in nerve disorders like Parkinson’s and Alzheimer’s,” wonders Fredrik Almqvist, who declares that they will now be following up these findings.

The research is being conducted at the Chemical Biology Centre, KBC, and the Umeå Centre for Microbial Research, UCMR at Umeå University and is based on the combined expertise of the chemists Pernilla Wittung-Stafshede, Magnus Wolf-Watz, and Fredrik Almqvist. Most of the study was carried out by post-doctoral fellows Istvan Horvath, Christoph F. Weise, and Emma Andersson. With the assistance of the KBC platform for nuclear magnetic resonance, NMR, the scientists have been able to study proteins at the atomic level.

For more information, please contact:
Pernilla Wittung-Stafshede, professor of biological chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University

E-mail: pernilla.wittung@chem.umu.se

Fredrik Almqvist, professor of organic chemistry, Department of Chemistry, Chemical Biological Centre, KBC, and Umeå Centre for Microbial Research, UCMR, Umeå University
Tel: +46 (0)90-7866925
E-mail: fredrik.almqvist@chem.umu.se
Magnus Wolf-Watz, associate professor of chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University
Tel: +46 (0)90-786 76 90
E-mail: magnus.wolf-watz@chem.umu.se
Original publication:
Istvan Horvath, Christoph Felix Weise, Emma K. Andersson, Erik Chorell, Magnus Sellstedt, Christoffer Bengtsson, Anders Olofsson, Scott J. Hultgren, Matthew R Chapman, Magnus Wolf-Watz, Fredrik Almqvist, and Pernilla EL Wittung-Stafshede. Mechanisms of protein oligomerization: Inhibitor of functional amyloids templates α-synuclein fibrillation. Journal of the American Chemical Society 2012. DOI: 10.1021/ja209829m. 2012-02-09

Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/ja209829m
http://www.umu.se

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>