Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria disarmer activates fiber formation in Parkinson’s protein

16.02.2012
The same substance that hampers the infection capability of bacteria can hasten the fiber formation of the protein that is involved in the development of Parkinson’s disease.

The study shows how important basic research is to our understanding of possible side effects from drug candidates interacting with various target proteins.

The study was done by researchers at Umeå University in Sweden and is published in the latest issue of the prestigious Journal of the American Chemical Society. The findings surprise all the researchers involved.

Fredrik Almqvist, professor of organic chemistry, working with colleagues at Washington University in St. Louis and the University of Michigan in Ann Arbor, has developed a molecule, FN075, that slows down the infection capability of bacteria. This molecule blocks the growth and function of the hair-like shoots that bacteria use to cause infections. Even though the molecule is not used in any drugs today, this disarming principle could be of great importance in future struggles against resistance to antibiotics.

Interestingly, bacteria’s hair-like shoots are structured according to the same principle as amyloid proteins, improperly folded proteins that accumulate in nerve disorders like Parkinson’s and Alzheimer’s diseases.

“So we tested whether FN 075 could also hamper the formation of amyloids in a protein that is implicated in Parkinson’s disease. But instead it turned out that the molecule boosted the formation of amyloid structures,” says Pernilla Wittung-Stafshede, professor of biological chemistry.

In other words, the same tiny molecule can have exactly the opposite effect depending on what protein it encounters and in what surroundings. The study thus shows that it is important to test for possible side effects that new substances might have on amyloid proteins.

“There seems to be a fine balance between what activities these types of substances hamper and what activities they prompt,” says Pernilla Wittung-Stafshede.

She says it is too early to say whether the effects on the amyloid proteins are positive or negative from a medical perspective. On the other hand, it is clear that molecules like FN075 are key research tools to achieve an understanding of these types of complex processes.

The new findings have inspired the researchers regarding how to continue to design and use small molecules that can affect amyloid formation.

“Perhaps some of the body’s own small metabolites help to trigger amyloid formation in nerve disorders like Parkinson’s and Alzheimer’s,” wonders Fredrik Almqvist, who declares that they will now be following up these findings.

The research is being conducted at the Chemical Biology Centre, KBC, and the Umeå Centre for Microbial Research, UCMR at Umeå University and is based on the combined expertise of the chemists Pernilla Wittung-Stafshede, Magnus Wolf-Watz, and Fredrik Almqvist. Most of the study was carried out by post-doctoral fellows Istvan Horvath, Christoph F. Weise, and Emma Andersson. With the assistance of the KBC platform for nuclear magnetic resonance, NMR, the scientists have been able to study proteins at the atomic level.

For more information, please contact:
Pernilla Wittung-Stafshede, professor of biological chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University

E-mail: pernilla.wittung@chem.umu.se

Fredrik Almqvist, professor of organic chemistry, Department of Chemistry, Chemical Biological Centre, KBC, and Umeå Centre for Microbial Research, UCMR, Umeå University
Tel: +46 (0)90-7866925
E-mail: fredrik.almqvist@chem.umu.se
Magnus Wolf-Watz, associate professor of chemistry, Department of Chemistry, Chemical Biological Centre, KBC, Umeå University
Tel: +46 (0)90-786 76 90
E-mail: magnus.wolf-watz@chem.umu.se
Original publication:
Istvan Horvath, Christoph Felix Weise, Emma K. Andersson, Erik Chorell, Magnus Sellstedt, Christoffer Bengtsson, Anders Olofsson, Scott J. Hultgren, Matthew R Chapman, Magnus Wolf-Watz, Fredrik Almqvist, and Pernilla EL Wittung-Stafshede. Mechanisms of protein oligomerization: Inhibitor of functional amyloids templates α-synuclein fibrillation. Journal of the American Chemical Society 2012. DOI: 10.1021/ja209829m. 2012-02-09

Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/ja209829m
http://www.umu.se

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>