The study shows how important basic research is to our understanding of possible side effects from drug candidates interacting with various target proteins.
The study was done by researchers at Umeå University in Sweden and is published in the latest issue of the prestigious Journal of the American Chemical Society. The findings surprise all the researchers involved.
Fredrik Almqvist, professor of organic chemistry, working with colleagues at Washington University in St. Louis and the University of Michigan in Ann Arbor, has developed a molecule, FN075, that slows down the infection capability of bacteria. This molecule blocks the growth and function of the hair-like shoots that bacteria use to cause infections. Even though the molecule is not used in any drugs today, this disarming principle could be of great importance in future struggles against resistance to antibiotics.
Interestingly, bacteria’s hair-like shoots are structured according to the same principle as amyloid proteins, improperly folded proteins that accumulate in nerve disorders like Parkinson’s and Alzheimer’s diseases.
“So we tested whether FN 075 could also hamper the formation of amyloids in a protein that is implicated in Parkinson’s disease. But instead it turned out that the molecule boosted the formation of amyloid structures,” says Pernilla Wittung-Stafshede, professor of biological chemistry.
In other words, the same tiny molecule can have exactly the opposite effect depending on what protein it encounters and in what surroundings. The study thus shows that it is important to test for possible side effects that new substances might have on amyloid proteins.
“There seems to be a fine balance between what activities these types of substances hamper and what activities they prompt,” says Pernilla Wittung-Stafshede.
She says it is too early to say whether the effects on the amyloid proteins are positive or negative from a medical perspective. On the other hand, it is clear that molecules like FN075 are key research tools to achieve an understanding of these types of complex processes.
The new findings have inspired the researchers regarding how to continue to design and use small molecules that can affect amyloid formation.
“Perhaps some of the body’s own small metabolites help to trigger amyloid formation in nerve disorders like Parkinson’s and Alzheimer’s,” wonders Fredrik Almqvist, who declares that they will now be following up these findings.
The research is being conducted at the Chemical Biology Centre, KBC, and the Umeå Centre for Microbial Research, UCMR at Umeå University and is based on the combined expertise of the chemists Pernilla Wittung-Stafshede, Magnus Wolf-Watz, and Fredrik Almqvist. Most of the study was carried out by post-doctoral fellows Istvan Horvath, Christoph F. Weise, and Emma Andersson. With the assistance of the KBC platform for nuclear magnetic resonance, NMR, the scientists have been able to study proteins at the atomic level.
For more information, please contact:E-mail: pernilla.wittung@chem.umu.se
Fredrik Almqvist, professor of organic chemistry, Department of Chemistry, Chemical Biological Centre, KBC, and Umeå Centre for Microbial Research, UCMR, Umeå University
Karin Wikman | idw
Further information:
http://pubs.acs.org/doi/abs/10.1021/ja209829m
http://www.umu.se
Further reports about: > Alzheimer > CHEMISTRY > Magnus > Microbial Nitrogen > UCMR > amyloid formation > amyloid proteins > bacteria > chemical engineering > organic chemistry
Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg
Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Getting electrons to move in a semiconductor
25.04.2018 | Physics and Astronomy
Reconstructing what makes us tick
25.04.2018 | Physics and Astronomy
Cheap 3-D printer can produce self-folding materials
25.04.2018 | Information Technology