Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria develop restraint for survival in a rock-paper-scissors community

21.06.2011
It is a common perception that bigger, stronger, faster organisms have a distinct advantage for long-term survival when competing with other organisms in a given community.

But new research from the University of Washington shows that in some structured communities, organisms increase their chances of survival if they evolve some level of restraint that allows competitors to survive as well, a sort of "survival of the weakest."

The phenomenon was observed in a community of three "nontransitive" competitors, meaning their relationship to each other is circular as in the children's game rock-paper-scissors in which scissors always defeats paper, paper always defeats rock and rock always defeats scissors.

In this case, the researchers created nontransitive communities of three strains of Escherichia coli bacteria, one that produces two antibiotics, one that is resistant to both antibiotics and one that is sensitive to both. The sensitive strain outgrows the resistant strain, which outgrows the producer, which kills the sensitive strain.

In communities in which the resistant strain curbed its pursuit of the producer, the resistant strain thrived. With no restraint, the resistant strain greatly reduced the population of the producer. But then the resistant strain was forced into greater competition with the strain sensitive to the antibiotics and the resistant strain's short-term gain meant its long-term demise.

"By becoming a better competitor in a well-mixed system, it could actually drive itself to extinction," said Joshua Nahum, a University of Washington graduate student in biology. "By growing faster, it actually can hurt its abundance."

Nahum is the lead author of a paper describing the work published online the week of June 22 in the Proceedings of the National Academy of Sciences. Co-authors are Brittany Harding, a UW biology undergraduate, and Benjamin Kerr, a UW associate professor of biology and the paper's corresponding author.

The researchers created 192 pools in which the bacteria could grow and interact. The bacteria could migrate among pools, and when migration occurred among neighboring pools the three strains formed multi-pool patches.

"The restrained patches, the ones that grew slower, seemed to last longer and the unrestrained patches, the ones that grew faster, burned themselves out faster," Nahum said.

To understand the process, imagine a community of three strains, Rock, Paper and Scissors, and then imagine the emergence of an unrestrained supercompetitor, Rock* (rock star), that is able to displace Scissors even faster than regular Rock can. But that also makes Rock* a better competitor against Rock, the researchers said. Eventually Rock* will be a victim of its own success, being preyed upon by Paper.

The irony, Kerr said, is that "by chasing your victim faster you actually help out the guy who's chasing you." Restraining exploitive behavior is beneficial to the patch in the long run, he said, and is a realistic embodiment of the proverb "The enemy of my enemy is my friend."

"In patches with faster growth, members of the unrestrained patch burn through their victims and then are left to face their victims' victims, their own enemies," he said.

The observed effect only applies to structured communities with limited migration, the researchers said. In an unstructured community with greater migration and mixing, a species that curbed its aggressiveness would not reduce its chances of being engulfed by its enemy.

The findings have potential implications for other ecological systems, including mating systems of certain lizards that could have analogs among some reptiles, fish, birds and insects.

The work was funded by the National Institutes of Health and the National Science Foundation.

For more information, contact Kerr at 206-221-3996 or kerrb@uw.edu, or Nahum at nahumj@uw.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>