Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is that bacteria dead yet?

01.07.2013
Nano and laser technology packed into small device tests antibiotic treatment in minutes

Researchers at EPFL have built a matchbox-sized device that can test for the presence of bacteria in a couple of minutes, instead of up to several weeks. A nano-lever vibrates in the presence of bacterial activity, while a laser reads the vibration and translates it into an electrical signal that can be easily read—the absence of a signal signifies the absence of bacteria.

Thanks to this method, it is quick and easy to determine if a bacteria has been effectively treated by an antibiotic, a crucial medical tool especially for resistant strains. Easily used in clinics, it could also prove useful for testing chemotherapy treatment. The research is published in the latest issue of Nature Nanotechnology.

"This method is fast and accurate. And it can be a precious tool for both doctors looking for the right dosage of antibiotics and for researchers to determine which treatments are the most effective," explains Giovanni Dietler.

Laser and nanotechnology read the bacteria's metabolic activity

It currently takes a long time to measure a bacterial infection's response to antibiotic treatment. Clinicians must culture the bacteria and then observe its growth, sometimes for almost a month, as is the case with tuberculosis, in order to determine if the treatment has been effective.

Thanks to advances in laser and optical technology, the EPFL team of physicists has reduced this time to a couple of minutes. To do so, Giovanni Dietler, Sandor Kasas and Giovanni Longo have exploited the microscopic movements of a bacterium's metabolism.

These vital signs are almost unperceivable. In order to test for them, the researchers place the bacteria on an extremely sensitive measuring device that vibrates a small lever—only slightly thicker than a strand of hair—in the presence of certain activity. The lever then vibrates under the metabolic activity of the germs. These infinitely small oscillations, on the order of one millionth of a millimeter, determine the presence or absence of the bacteria.

To measure these vibrations, the researchers project a laser onto the lever. The light is then reflected back and the signal is converted into an electrical current to be interpreted by the clinician or researcher. When the electrical current is a flat line, one knows that the bacteria are all dead; it is as easy to read as an electrocardiogram.

A promising method for cancer treatment

The researchers have miniaturized the tool—it is currently the size of a matchbox. "By joining our tool with a piezoelectric device instead of a laser, we could further reduce its size to the size of a microchip," says Giovanni Dietler. They could then be combined together to test a series of antibiotics on one strain in only a couple of minutes.

The researchers are currently evaluating the tool's potential in other fields, notably oncology. They are looking into measuring the metabolism of tumor cells that have been exposed to cancer treatment to evaluate the efficiency of the treatment. "If our method also works in this field, we really have a precious tool on our hands that can allow us to develop new treatments and also test both quickly and simply how the patient is reacting to the cancer treatment," says Sandor Kasas.

Lionel Pousaz | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>