Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria change movement direction in response to oxygen: Molecular interactions unravelled

25.06.2012
How single cell organisms like bacteria manage to react to their environment is not yet completely understood.

Together with colleagues from Japan, Dr. Samir El-Mashtoly from the RUB Department of Biophysics, led by Prof. Dr. Klaus Gerwert, has gained new insights into the molecular interactions during aerotaxis of Bacillus subtilis, i.e., the dependence of the movement direction on the oxygen concentration in the environment.


Conformational changes within HemAT: When oxygen binds to the sensor domain (for methodological reasons, the experiment was carried out with carbon monoxide, CO, instead of oxygen), the protein conformation in the vicinity of the sensor domain changes. Thus, helices B and G are displaced. This affects the neighbouring H-helix which is continuous with the signalling domain.
Illustration: Samir El-Mashtoly

The research team investigated the conformational changes within the protein HemAT. Via a signal transduction chain, this protein sends a command to the flagellar motor which controls the movement direction. They report in the Journal of Biological Chemistry.

How bacteria change movement direction in response to oxygen
Molecular interactions unravelled
RUB researcher and Japanese colleagues report in the Journal of Biological Chemistry

How single cell organisms like bacteria manage to react to their environment is not yet completely understood. Together with colleagues from Japan, Dr. Samir El-Mashtoly from the RUB Department of Biophysics, led by Prof. Dr. Klaus Gerwert, has gained new insights into the molecular interactions during aerotaxis of Bacillus subtilis, i.e., the dependence of the movement direction on the oxygen concentration in the environment. The research team investigated the conformational changes within the protein HemAT. Via a signal transduction chain, this protein sends a command to the flagellar motor which controls the movement direction. They report in the Journal of Biological Chemistry.

Signal transduction chain

The signal transduction chain starts with binding of oxygen to HemAT’s heme domain, which is also known from haemoglobin in the red blood cells and is called the sensor domain of HemAT. Oxygen binding leads to a conformational change in the sensor domain. This in turn provokes several further conformational changes within HemAT that finally affect the signalling domain of the protein. The signalling domain then transmits the information about a rise in oxygen concentration to other proteins within the cell. These proteins forward the message to the motor of the flagellum. The research team investigated how the information travels from the sensor domain of HemAT to its signalling domain.

Protein helices forward the information

For that purpose, Dr. El-Mashtoly used the time-resolved ultraviolet resonance Raman spectroscopic facilities in the Picobiology Institute in Japan. This method provides, for instance, structural information about the conformation of the protein and hydrogen bonding interactions on a nanosecond to microsecond time scale. The results suggest that the conformational change in the sensor domain, i.e., the heme structure, induces the displacement of two protein helices within HemAT. This displacement affects another helix which is continuous with the structure of the signalling domain. Due to a series of conformational changes, the information about oxygen binding thus reaches the signalling domain of the protein.

Bibliographic record

S. El-Mashtoly, M. Kubo, Y. Gu, H. Sawai, S. Nakashima, T. Ogura, S. Aono, T. Kitagawa (2012): Site-specific protein dynamics in communication pathway from sensor to signaling domain of oxygen sensor protein, HemAT-Bs, Journal of Biological Chemistry, doi: 10.1074/jbc.M112.357855

Further information

Dr. Samir El-Mashtoly, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-29833
samir.elmashtoly@bph.rub.de

Biophysics at RUB
http://www.bph.rub.de/index_en.htm

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.bph.rub.de/index_en.htm
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>