Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria change movement direction in response to oxygen: Molecular interactions unravelled

25.06.2012
How single cell organisms like bacteria manage to react to their environment is not yet completely understood.

Together with colleagues from Japan, Dr. Samir El-Mashtoly from the RUB Department of Biophysics, led by Prof. Dr. Klaus Gerwert, has gained new insights into the molecular interactions during aerotaxis of Bacillus subtilis, i.e., the dependence of the movement direction on the oxygen concentration in the environment.


Conformational changes within HemAT: When oxygen binds to the sensor domain (for methodological reasons, the experiment was carried out with carbon monoxide, CO, instead of oxygen), the protein conformation in the vicinity of the sensor domain changes. Thus, helices B and G are displaced. This affects the neighbouring H-helix which is continuous with the signalling domain.
Illustration: Samir El-Mashtoly

The research team investigated the conformational changes within the protein HemAT. Via a signal transduction chain, this protein sends a command to the flagellar motor which controls the movement direction. They report in the Journal of Biological Chemistry.

How bacteria change movement direction in response to oxygen
Molecular interactions unravelled
RUB researcher and Japanese colleagues report in the Journal of Biological Chemistry

How single cell organisms like bacteria manage to react to their environment is not yet completely understood. Together with colleagues from Japan, Dr. Samir El-Mashtoly from the RUB Department of Biophysics, led by Prof. Dr. Klaus Gerwert, has gained new insights into the molecular interactions during aerotaxis of Bacillus subtilis, i.e., the dependence of the movement direction on the oxygen concentration in the environment. The research team investigated the conformational changes within the protein HemAT. Via a signal transduction chain, this protein sends a command to the flagellar motor which controls the movement direction. They report in the Journal of Biological Chemistry.

Signal transduction chain

The signal transduction chain starts with binding of oxygen to HemAT’s heme domain, which is also known from haemoglobin in the red blood cells and is called the sensor domain of HemAT. Oxygen binding leads to a conformational change in the sensor domain. This in turn provokes several further conformational changes within HemAT that finally affect the signalling domain of the protein. The signalling domain then transmits the information about a rise in oxygen concentration to other proteins within the cell. These proteins forward the message to the motor of the flagellum. The research team investigated how the information travels from the sensor domain of HemAT to its signalling domain.

Protein helices forward the information

For that purpose, Dr. El-Mashtoly used the time-resolved ultraviolet resonance Raman spectroscopic facilities in the Picobiology Institute in Japan. This method provides, for instance, structural information about the conformation of the protein and hydrogen bonding interactions on a nanosecond to microsecond time scale. The results suggest that the conformational change in the sensor domain, i.e., the heme structure, induces the displacement of two protein helices within HemAT. This displacement affects another helix which is continuous with the structure of the signalling domain. Due to a series of conformational changes, the information about oxygen binding thus reaches the signalling domain of the protein.

Bibliographic record

S. El-Mashtoly, M. Kubo, Y. Gu, H. Sawai, S. Nakashima, T. Ogura, S. Aono, T. Kitagawa (2012): Site-specific protein dynamics in communication pathway from sensor to signaling domain of oxygen sensor protein, HemAT-Bs, Journal of Biological Chemistry, doi: 10.1074/jbc.M112.357855

Further information

Dr. Samir El-Mashtoly, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-29833
samir.elmashtoly@bph.rub.de

Biophysics at RUB
http://www.bph.rub.de/index_en.htm

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.bph.rub.de/index_en.htm
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>