Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria breakthrough is heaven scent

16.08.2010
Bacteria are well-known to be the cause of some of the most repugnant smells on earth, but now scientists have revealed this lowest of life forms actually has a sense of smell of its own.

A team of marine microbiologists at Newcastle University have discovered for the first time that bacteria have a molecular "nose" that is able to detect airborne, smell-producing chemicals such as ammonia.

Published today in Biotechnology Journal, their study shows how bacteria are capable of 'olfaction' – sensing volatile chemicals in the air such as ammonia produced by rival bacteria present in the environment.

Led by Dr Reindert Nijland, the research also shows that bacteria respond to this smell by producing a biofilm – or 'slime' – the individual bacteria joining together to colonise an area in a bid to push out any potential competitor.

Biofilm is a major cause of infection on medical implants such as heart valves, artificial hips and even breast implants. Also known as 'biofouling' it costs the marine industry millions every year, slowing ships down and wasting precious fuel. But it also has its advantages. Certain biofilms thrive on petroleum oil and can be used to clean up an oil spill.

Dr Nijland, who carried out the work at Newcastle University's Dove Marine Laboratory, said the findings would help to further our understanding of how biofilms are formed and how we might be able to manipulate them to our advantage.

"This is the first evidence of a bacterial 'nose' capable of detecting potential competitors," he said.

"Slime is important in medical and industrial settings and the fact that the cells formed slime on exposure to ammonia has important implications for understanding how biofilms are formed and how we might be able to use this to our advantage.

"The next step will be to identify the nose or sensor that actually does the smelling."

This latest discovery shows that bacteria are capable of at least four of the five senses; a responsiveness to light – sight – contact-dependent gene expression – touch – and a response to chemicals and toxins in their environment either through direct contact – taste – or through the air – smell.

Ammonia is one of the simplest sources of nitrogen – a key nutrient for bacterial growth. Using rival bacteria Bacillus subtilis and B.licheniformus, both commonly found in the soil, the team found that each produced a biofilm in response to airborne ammonia and that the response decreased as the distance between the two bacterial colonies increased.

Project supervisor Professor Grant Burgess, director of the Dove Marine Laboratory, said that understanding the triggers that prompt this sort of response had huge potential.

"The sense of smell has been observed in many creatures, even yeasts and slime moulds, but our work shows for the first time that a sense of smell even exists in lowly bacteria.

"From an evolutionary perspective, we believe this may be the first example of how living creatures first learned to smell other living creatures.

"It is an early observation and much work is still to be done but, nevertheless, this is an important breakthrough which also shows how complex bacteria are and how they use a growing number of ways to communicate with each other.

"Bacterial infections kill millions of people every year and discovering how your bacterial enemies communicate with each other is an important step in winning this war. This research provides clues to so far unknown ways of bacterial communication."

Prof. Grant Burgess | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>