Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria battle against toxic fluoride

Regular use of fluoride-containing toothpaste and mouthwash has long been known to strengthen the enamel on teeth. But new research by Howard Hughes Medical Institute (HHMI) scientists finds that fluoride also has dramatic effects on bacteria inside the mouth -- including those that form plaque and can cause cavities.

HHMI researcher Ronald Breaker of Yale University has discovered the cellular chain of events that occurs inside a bacterium after it encounters fluoride in its environment. His team's findings reveal that many bacteria try to fend off fluoride – which the organisms treat as a toxic substance – by throwing it out. The presence of such a transport system indicates that fluoride itself has antimicrobial properties, Breaker said. The findings are published online in Science Express on December 22, 2011.

Breaker's lab studies non-coding RNA, stretches of genetic material that play regulatory roles in the cell instead of coding for proteins. Using different computer algorithms, he and his colleagues analyze the genomes of organisms to identify signature sequences in genetic material that likely indicate the presence of noncoding RNA. Among the types of non-coding RNAs they find are regulatory molecules called riboswitches. Normally, the role of a riboswitch is easy to deduce: Riboswitches are attached to the genes that they regulate. If the gene is needed to produce a certain compound, the riboswitch is usually sensitive to that compound, so when its level increases or decreases in the cell, the riboswitch can cause more or less to be made. Aside from their interest in the biology of riboswitches, Breaker's group is studying these genetic switches because they could represent new drug targets and might be used to control the activity of genes inserted into cells as gene therapies.

In a recent set of experiments, Breaker's team identified a new riboswitch that was attached to a handful of genes with vague or unknown functions. They were stumped. "We knew we had a riboswitch but we didn't know what it bound," says Breaker. "And we were very intrigued because it was one of the only non-coding RNAs we've ever found that's present in both bacteria and archaea. That suggests that it has ancient origins and an important role in the cell," he notes.

So Breaker and his colleagues put the RNA in a test tube and began to mix in different chemicals, observing whether or not they bound to the riboswitch. They worked through a long list of more common chemicals before they stumbled on fluoride. The addition of fluoride was an accident -- fluoride was a contaminant in a sample of a different chemical they were testing.

Once Breaker's group found that the riboswitch bound to fluoride, they were able to show that the genes controlled by the riboswitch are those that help the cell fight the toxicity of fluoride. Fluoride, a negatively charged ion, binds aggressively to some metabolites and essential enzymes. If fluoride floods a cell, it can quickly shut down cellular processes. The fluoride-sensing riboswitch, Breaker's team discovered, turns on a gene coding for ion channels that transport fluoride back out of the cell.

"This riboswitch is detecting fluoride buildup in the cell and turning on genes to help overcome that buildup," says Breaker. Whether or not the riboswitch is successful, and fast enough, determines whether a bacterium can fight the effects of fluoride.

"Our data not only help explain how cells fight the toxicity of fluoride, but it also gives us a sense of how we might be able to enhance the antimicrobial properties of fluoride," says Breaker. "In the future we might be able to use this knowledge to make fluoride even more toxic to bacteria." Blocking the fluoride channel, for example, makes cells 200 times more sensitive to fluoride, the researchers showed. Finding other ways to enhance fluoride's effects—by inactivating the riboswitch or shutting off other downstream genes—could make fluoride an even better antimicrobial agent.

Jim Keeley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>