Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria battle against toxic fluoride

23.12.2011
Regular use of fluoride-containing toothpaste and mouthwash has long been known to strengthen the enamel on teeth. But new research by Howard Hughes Medical Institute (HHMI) scientists finds that fluoride also has dramatic effects on bacteria inside the mouth -- including those that form plaque and can cause cavities.

HHMI researcher Ronald Breaker of Yale University has discovered the cellular chain of events that occurs inside a bacterium after it encounters fluoride in its environment. His team's findings reveal that many bacteria try to fend off fluoride – which the organisms treat as a toxic substance – by throwing it out. The presence of such a transport system indicates that fluoride itself has antimicrobial properties, Breaker said. The findings are published online in Science Express on December 22, 2011.

Breaker's lab studies non-coding RNA, stretches of genetic material that play regulatory roles in the cell instead of coding for proteins. Using different computer algorithms, he and his colleagues analyze the genomes of organisms to identify signature sequences in genetic material that likely indicate the presence of noncoding RNA. Among the types of non-coding RNAs they find are regulatory molecules called riboswitches. Normally, the role of a riboswitch is easy to deduce: Riboswitches are attached to the genes that they regulate. If the gene is needed to produce a certain compound, the riboswitch is usually sensitive to that compound, so when its level increases or decreases in the cell, the riboswitch can cause more or less to be made. Aside from their interest in the biology of riboswitches, Breaker's group is studying these genetic switches because they could represent new drug targets and might be used to control the activity of genes inserted into cells as gene therapies.

In a recent set of experiments, Breaker's team identified a new riboswitch that was attached to a handful of genes with vague or unknown functions. They were stumped. "We knew we had a riboswitch but we didn't know what it bound," says Breaker. "And we were very intrigued because it was one of the only non-coding RNAs we've ever found that's present in both bacteria and archaea. That suggests that it has ancient origins and an important role in the cell," he notes.

So Breaker and his colleagues put the RNA in a test tube and began to mix in different chemicals, observing whether or not they bound to the riboswitch. They worked through a long list of more common chemicals before they stumbled on fluoride. The addition of fluoride was an accident -- fluoride was a contaminant in a sample of a different chemical they were testing.

Once Breaker's group found that the riboswitch bound to fluoride, they were able to show that the genes controlled by the riboswitch are those that help the cell fight the toxicity of fluoride. Fluoride, a negatively charged ion, binds aggressively to some metabolites and essential enzymes. If fluoride floods a cell, it can quickly shut down cellular processes. The fluoride-sensing riboswitch, Breaker's team discovered, turns on a gene coding for ion channels that transport fluoride back out of the cell.

"This riboswitch is detecting fluoride buildup in the cell and turning on genes to help overcome that buildup," says Breaker. Whether or not the riboswitch is successful, and fast enough, determines whether a bacterium can fight the effects of fluoride.

"Our data not only help explain how cells fight the toxicity of fluoride, but it also gives us a sense of how we might be able to enhance the antimicrobial properties of fluoride," says Breaker. "In the future we might be able to use this knowledge to make fluoride even more toxic to bacteria." Blocking the fluoride channel, for example, makes cells 200 times more sensitive to fluoride, the researchers showed. Finding other ways to enhance fluoride's effects—by inactivating the riboswitch or shutting off other downstream genes—could make fluoride an even better antimicrobial agent.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>