Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria battle against toxic fluoride

23.12.2011
Regular use of fluoride-containing toothpaste and mouthwash has long been known to strengthen the enamel on teeth. But new research by Howard Hughes Medical Institute (HHMI) scientists finds that fluoride also has dramatic effects on bacteria inside the mouth -- including those that form plaque and can cause cavities.

HHMI researcher Ronald Breaker of Yale University has discovered the cellular chain of events that occurs inside a bacterium after it encounters fluoride in its environment. His team's findings reveal that many bacteria try to fend off fluoride – which the organisms treat as a toxic substance – by throwing it out. The presence of such a transport system indicates that fluoride itself has antimicrobial properties, Breaker said. The findings are published online in Science Express on December 22, 2011.

Breaker's lab studies non-coding RNA, stretches of genetic material that play regulatory roles in the cell instead of coding for proteins. Using different computer algorithms, he and his colleagues analyze the genomes of organisms to identify signature sequences in genetic material that likely indicate the presence of noncoding RNA. Among the types of non-coding RNAs they find are regulatory molecules called riboswitches. Normally, the role of a riboswitch is easy to deduce: Riboswitches are attached to the genes that they regulate. If the gene is needed to produce a certain compound, the riboswitch is usually sensitive to that compound, so when its level increases or decreases in the cell, the riboswitch can cause more or less to be made. Aside from their interest in the biology of riboswitches, Breaker's group is studying these genetic switches because they could represent new drug targets and might be used to control the activity of genes inserted into cells as gene therapies.

In a recent set of experiments, Breaker's team identified a new riboswitch that was attached to a handful of genes with vague or unknown functions. They were stumped. "We knew we had a riboswitch but we didn't know what it bound," says Breaker. "And we were very intrigued because it was one of the only non-coding RNAs we've ever found that's present in both bacteria and archaea. That suggests that it has ancient origins and an important role in the cell," he notes.

So Breaker and his colleagues put the RNA in a test tube and began to mix in different chemicals, observing whether or not they bound to the riboswitch. They worked through a long list of more common chemicals before they stumbled on fluoride. The addition of fluoride was an accident -- fluoride was a contaminant in a sample of a different chemical they were testing.

Once Breaker's group found that the riboswitch bound to fluoride, they were able to show that the genes controlled by the riboswitch are those that help the cell fight the toxicity of fluoride. Fluoride, a negatively charged ion, binds aggressively to some metabolites and essential enzymes. If fluoride floods a cell, it can quickly shut down cellular processes. The fluoride-sensing riboswitch, Breaker's team discovered, turns on a gene coding for ion channels that transport fluoride back out of the cell.

"This riboswitch is detecting fluoride buildup in the cell and turning on genes to help overcome that buildup," says Breaker. Whether or not the riboswitch is successful, and fast enough, determines whether a bacterium can fight the effects of fluoride.

"Our data not only help explain how cells fight the toxicity of fluoride, but it also gives us a sense of how we might be able to enhance the antimicrobial properties of fluoride," says Breaker. "In the future we might be able to use this knowledge to make fluoride even more toxic to bacteria." Blocking the fluoride channel, for example, makes cells 200 times more sensitive to fluoride, the researchers showed. Finding other ways to enhance fluoride's effects—by inactivating the riboswitch or shutting off other downstream genes—could make fluoride an even better antimicrobial agent.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>