Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some bacteria attack using spring-loaded poison daggers

27.02.2012
Bacteria have evolved different systems for secreting proteins into the fluid around them or into other cells.

Some, for example, have syringe-like exterior structures that can pierce other cells and inject proteins. Another system, called a type VI secretion system, is found in about a quarter of all bacteria with two membranes.


A team, co-led by researchers at the California Institute of Technology, has figured out the structure of the type VI secretion system apparatus and proposed how it might work -- by shooting spring-loaded poison molecular daggers. Credit: Nature/Everett Kane

Despite being common, researchers have not understood how it works. Now a team, co-led by researchers at the California Institute of Technology (Caltech), has figured out the structure of the type VI secretion system apparatus and proposed how it might work—by shooting spring-loaded poison molecular daggers.

"People aren't surprised that animals have really interesting ways to hurt each other—snakes have venom, bears have claws," says Grant Jensen, professor of biology at Caltech and coleader of the study. "But they might be surprised that a single cell within one of those animals' bodies is still 100 times larger than the bacterial cells we're talking about, and yet the bacterial cells contain weapons that are so sophisticated. That's the marvel."

The nano-weapon—which spans a distance no longer than about 80 atoms lined up end-to-end—is a tube that contracts very quickly, firing an inner dagger through the cell's membranes, into the surrounding medium and, possibly, into another cell. The tube then disassembles and can reassemble elsewhere in the cell, ready to fire another molecular dagger.

The findings, made in collaboration with researchers at Harvard Medical School, appear as an advance online publication of the journal Nature.

The work began with an accidental discovery. Researchers in the Jensen lab were using an electron cryomicroscope—an electron microscope that enables researchers to observe samples in a near-native state—to image an environmental strain of Vibrio cholerae cells. Unlike traditional electron microscopy—for which samples must be fixed, dehydrated, embedded in plastic, sectioned, and stained—electron cryotomography (ECT) involves freezing samples so quickly that they become trapped within a layer of transparent, glasslike ice. The microscope can then capture high-resolution images as the sample is rotated, and those images can be stitched together to make 3D videos—so-called tomograms.

Jensen and his team wanted to use the technique to observe how V. cholerae cells segregate two duplicate copies of their genetic material before dividing. Instead, they noticed relatively large tubelike structures spanning the entire width of the cells. And they had no idea what the structures were.

Jensen started sharing preliminary images of the mysterious structures in lectures around the country, asking if anyone knew what they might be. Finally, someone suggested that he talk to John Mekalanos of Harvard Medical School, who was involved in the original discovery of the type VI secretion system. After Martin Pilhofer, a postdoctoral scholar in Jensen's lab, comprehensively imaged the system and conducted additional investigations, Mekalanos's group became convinced that the tubelike structures might actually help the bacteria translocate proteins.

The Mekalanos lab made a version of V. cholerae lacking one of the proteins that makes up the tube structure. With that protein knocked out, the type VI secretion system disappeared. In another experiment, they attached fluorescent tags to the proteins and were actually able to watch the structures form and contract within living cells.

"When the tube contracts, that's when it shoots," says Pilhofer. "That result agrees well with what we had seen using the electron cryomicroscope, where we observed long tubular structures in two different conformations—extended and contracted. Whereas electron cryomicroscopy allowed us to observe the secretion apparatus at high resolution, the fluorescence study gave us more insight into the dynamics of the system."

The firing mechanism is similar to the one used by bacteriophages, viruses that infect bacteria. Phage tails are made up of an outer sheath and an inner tube that gets ejected. Since other researchers had previously established that proteins in the type VI secretion system are similar to those found in various parts of the phage tail and its associated structures, there is even more support for the newly discovered mechanism for the type VI secretion system.

"These amazing tubes inside the cell went undetected for decades of traditional electron microscopy, and they may have stayed that way for many more," says Jensen, who is also an HHMI investigator. "But Caltech made a wise investment a long time ago, with the generous help of the Gordon and Betty Moore Foundation, into our one-of-a-kind electron cryomicroscope, and it is truly what allowed us to see these structures."

In addition to Jensen, Pilhofer, and Mekalanos, other authors on the Nature paper, "Type VI secretion requires a dynamic contractile phage tail-like structure," include Gregory Henderson, a former graduate student in Jensen's lab who is now a resident physician at the Mayo Clinic, and Marek Basler, a postdoctoral scholar at Harvard Medical School. The work was supported by grants from the National Institute of Allergy and Infectious Diseases and the National Institute of General Medical Sciences.

Deborah Williams-Hedges | EurekAlert!
Further information:
http://www.caltech.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>