Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How bacteria attack their host cells with sticky lollipops

12.11.2012
Press release of the Max Planck Institute for Developmental Biology and the Leibniz-Institut für Molekulare Pharmakologie:

Tübingen and Berlin scientists investigate pathogens by help of solid-state nuclear magnetic resonance spectroscopy – Publications in Nature Methods and Nature Scientific Reports


lollipop structures enabling the bacteria to attach to their host cells. Copyright: Barth van Rossum/Leibniz-Institut fuer Molekulare Pharmakologie

Yersinia enterocolitica, a pathogenic bacterium, causes fever and diarrhea. By help of a protein anchored in its membrane, Yersinia attaches to its host cells and infects them. Scientists of the Max Planck Institute for Developmental Biology in Tübingen and the Leibniz-Institut fuer Molekulare Pharmakologie in Berlin have determined the structure of an important component of the membrane protein and have gained insight into its biogenesis. The membrane proteins provide an interesting starting point for the development of new antibiotics against pathogens.

Several diseases are caused by an infection with Yersinia enterocolitica. In babies the bacteria induce fever and diarrhea, in adolescents and adults they cause inflammations of the small intestine and various forms of inflammatory arthritis. Yersinia can be transmitted to humans directly from animals, especially pigs, if for example meat has not been heated sufficiently. Special membrane proteins of the bacteria, so-called adhesins, do not only look like lollipops, but are also as sticky as the sweets. They enable the bacteria to attach to their host cells and to invade them. The adhesins reach the bacterial surface by a complex autotransport mechanism. In their study the scientists concentrated on the membrane domain of the complex protein that is responsible for the transport of the extracellular domains. “This study could only be carried out in a true collaboration,” says Dirk Linke from the Max Planck Institute. The study was funded by the ‘Forschungsprogramm Methoden für die Lebenswissenschaften’ of the Baden-Württemberg Stiftung.

Proteins located in the membrane are often difficult to isolate, purify and crystallize. It is therefore challenging to study them by conventional structure determination methods. The scientists used solid-state nuclear magnetic resonance spectroscopy to gain structural information about the membrane protein domain. “In addition, magnetic resonance spectroscopy provides insight into the transport dynamics,” explains Barth van Rossum from the Leibniz Institute.

Yersinia belongs to the class of gram-negative bacteria who are bounded by a specially structured outer double membrane. Many more pathogenic bacteria such as salmonella, legionella or the Cholera pathogen are members of this group causing diarrhea, infections of the urinary tract or the pulmonary tract. The scientists assume that, similar to Yersinia, many gram-negative bacteria make use of membrane proteins in the infection process. “However, in human cells this type of membrane protein is not to be found,” says Dirk Linke. Hopes are that the knowledge about the autotransporter proteins will help in the development of new substances to specifically block transport processes at the membrane of pathogenic bacteria. However the scientists state that there is still a long way to go. They will now conduct new experiments to systematically apply changes to the particularly flexible parts of the protein domain in order to reach a deeper understanding of its mechanism.

Original publications:
Shakeel A. Shahid, Benjamin Bardiaux, Trent Franks, Ludwig Krabben, Michael Habeck, Barth-Jan van Rossum, Dirk Linke: Membrane protein structure determination by solid-state NMR spectroscopy of microcrystals. Nature Methods, 2012; doi: 10.1038/NMETH.2248

Shakeel A. Shahid, Stefan Markovic, Dirk Linke & Barth-Jan van Rossum: Assignment and secondary structure of the YadA membrane protein by solid-state MAS NMR. Scientific Reports (2012); doi: 10.1038/srep00803

Contact:

Dirk Linke
Max Planck Institute for Developmental Biology
Phone: +49 7071 601- 357
e-mail: dirk.linke(at)tuebingen.mpg.de
Janna Eberhardt (Public Relations)
Phone: +49 7071 601- 444
e-mail: presse-eb(at)tuebingen.mpg.de
Barth-Jan van Rossum
Leibniz-Institut für Molekulare Pharmakologie
Phone: +49 30 94793- 244
e-mail:brossum(at)fmp-berlin.de
Silke Oßwald (Public Relations)
Phone: +49 30 94793- 104
e-mail: osswald(at)fmp-berlin.de

Janna Eberhardt | Max-Planck-Institut
Further information:
http://www.fmp-berlin.de
http://tuebingen.mpg.de/en/homepage/detail/how-bacteria-attack-their-host-cells-with-sticky-lollipops.html

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>