Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria and algae act as biocatalysts for deep-sea raw material deposition

02.06.2009
Microorganisms trigger the formation of manganese nodules and manganese crusts - a model for future extraction of raw materials --- Publication in TRENDS IN BIOTECHNOLOGY

The sea floor is strewn with raw materials that could be very important in the future: Manganese and iron, but also rarer and more precious elements such as cobalt, copper, zinc and nickel, are present in great quantities in the form of deep-sea nodules and crusts. The depositions of such materials from seawater and sediment is the result of a process known as "biomineralization".

Microorganisms such as bacteria and algae contribute to this process of nodule and crust accretion and catalyze the accumulation of metals, as has been shown by new research at the Institute of Physiological Chemistry and Pathobiochemistry at Johannes Gutenberg University Mainz. The new findings could, the scientists believe, contribute to an environment-friendly and sustainable use of valuable marine natural resources.

Competition for the resources on the seabed has already begun; the industrialized countries have already staked their claims and marked off regions with large re-serves of raw materials. "This is a potential source of international conflict," believes Professor Werner Müller of the University of Mainz. Once we understand exactly how the deep-sea nodules and crusts are created, we might perhaps in the not too distant future be in the position to develop strains of microorganisms that could very specifically "grow" important raw materials for us. Müller has been investigating the submarine world for over 30 years and is regarded as a pioneer of sponge research in Germany. But the interests of the qualified molecular biologist are not restricted to sponges, which he considers to offer a virtually inexhaustible source of raw materials, starting with bioactive substances for medical use to silicates for optic pathways. In his eyes, bacteria and algae are also genuine little magicians.

Manganese nodules are formed on the sea floor at depths of 4,000 to 5,000 meters. In the last 10 million years or so, an estimated 300 billion tonnes of manganese has accumulated in the form of nodules. "This is quite astonishing when you consider that the concentration of manganese in seawater is vanishingly?small," says Müller. Besides manganese, the nodules (which resemble potato tubers) also contain iron and non-ferrous heavy metals which accumulate in layers. Once a tiny bio-seed has formed, metal ions attach themselves continuously to the outer layer. Working in cooperation with Chinese scientists, mainly Professor Dr X. H. Wang, Müller has now discovered what triggers this process. According to their findings, the bio-seeds are bacteria that have an additional protein layer, known as the S-layer, on their outer membrane. "The outermost stratum of the S-layer is an ideal organic matrix that not only protects microorganisms against harmful environmental effects but also facilitates the deposition of minerals." Müller and his research partners have found complete chains of bacteria with S-layers in manganese nodules that provided the basis for the synthesis of the biomaterials. "Once the primary layer is present, autocatalysis takes over and the material completes the process itself."

In the case of deep-sea crusts, a unicellular alga rather than a bacterium provides the bio-seed. The deep-sea crusts - also known as manganese or cobalt crusts - are found at depths of 800 to 2,400 meters and also contain significant quantities of valuable raw materials. They are created by coccolithophorides, a form of armoured algae that are completely encased in a protective shell of calcium carbonate. These algae live at a depth of around 100 meters. When they die, their protective shells fall to deeper levels where bonds with manganese ions are formed by means of chemi-cal transformation.

"Perhaps we can use nature as our model, so that in future we will also be able to exploit algae and bacteria to extract manganese and other metals from a seawater environment," explains Müller. This could help to defuse potential future conflict for resources and contribute to sustainable production, without damaging the deep-sea environment.

Original publication:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30 April 2009
Volume 27, 375-383; doi:10.1016/j.tibtech.2009.03.004

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>