Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria and algae act as biocatalysts for deep-sea raw material deposition

02.06.2009
Microorganisms trigger the formation of manganese nodules and manganese crusts - a model for future extraction of raw materials --- Publication in TRENDS IN BIOTECHNOLOGY

The sea floor is strewn with raw materials that could be very important in the future: Manganese and iron, but also rarer and more precious elements such as cobalt, copper, zinc and nickel, are present in great quantities in the form of deep-sea nodules and crusts. The depositions of such materials from seawater and sediment is the result of a process known as "biomineralization".

Microorganisms such as bacteria and algae contribute to this process of nodule and crust accretion and catalyze the accumulation of metals, as has been shown by new research at the Institute of Physiological Chemistry and Pathobiochemistry at Johannes Gutenberg University Mainz. The new findings could, the scientists believe, contribute to an environment-friendly and sustainable use of valuable marine natural resources.

Competition for the resources on the seabed has already begun; the industrialized countries have already staked their claims and marked off regions with large re-serves of raw materials. "This is a potential source of international conflict," believes Professor Werner Müller of the University of Mainz. Once we understand exactly how the deep-sea nodules and crusts are created, we might perhaps in the not too distant future be in the position to develop strains of microorganisms that could very specifically "grow" important raw materials for us. Müller has been investigating the submarine world for over 30 years and is regarded as a pioneer of sponge research in Germany. But the interests of the qualified molecular biologist are not restricted to sponges, which he considers to offer a virtually inexhaustible source of raw materials, starting with bioactive substances for medical use to silicates for optic pathways. In his eyes, bacteria and algae are also genuine little magicians.

Manganese nodules are formed on the sea floor at depths of 4,000 to 5,000 meters. In the last 10 million years or so, an estimated 300 billion tonnes of manganese has accumulated in the form of nodules. "This is quite astonishing when you consider that the concentration of manganese in seawater is vanishingly?small," says Müller. Besides manganese, the nodules (which resemble potato tubers) also contain iron and non-ferrous heavy metals which accumulate in layers. Once a tiny bio-seed has formed, metal ions attach themselves continuously to the outer layer. Working in cooperation with Chinese scientists, mainly Professor Dr X. H. Wang, Müller has now discovered what triggers this process. According to their findings, the bio-seeds are bacteria that have an additional protein layer, known as the S-layer, on their outer membrane. "The outermost stratum of the S-layer is an ideal organic matrix that not only protects microorganisms against harmful environmental effects but also facilitates the deposition of minerals." Müller and his research partners have found complete chains of bacteria with S-layers in manganese nodules that provided the basis for the synthesis of the biomaterials. "Once the primary layer is present, autocatalysis takes over and the material completes the process itself."

In the case of deep-sea crusts, a unicellular alga rather than a bacterium provides the bio-seed. The deep-sea crusts - also known as manganese or cobalt crusts - are found at depths of 800 to 2,400 meters and also contain significant quantities of valuable raw materials. They are created by coccolithophorides, a form of armoured algae that are completely encased in a protective shell of calcium carbonate. These algae live at a depth of around 100 meters. When they die, their protective shells fall to deeper levels where bonds with manganese ions are formed by means of chemi-cal transformation.

"Perhaps we can use nature as our model, so that in future we will also be able to exploit algae and bacteria to extract manganese and other metals from a seawater environment," explains Müller. This could help to defuse potential future conflict for resources and contribute to sustainable production, without damaging the deep-sea environment.

Original publication:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30 April 2009
Volume 27, 375-383; doi:10.1016/j.tibtech.2009.03.004

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>