Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria and algae act as biocatalysts for deep-sea raw material deposition

02.06.2009
Microorganisms trigger the formation of manganese nodules and manganese crusts - a model for future extraction of raw materials --- Publication in TRENDS IN BIOTECHNOLOGY

The sea floor is strewn with raw materials that could be very important in the future: Manganese and iron, but also rarer and more precious elements such as cobalt, copper, zinc and nickel, are present in great quantities in the form of deep-sea nodules and crusts. The depositions of such materials from seawater and sediment is the result of a process known as "biomineralization".

Microorganisms such as bacteria and algae contribute to this process of nodule and crust accretion and catalyze the accumulation of metals, as has been shown by new research at the Institute of Physiological Chemistry and Pathobiochemistry at Johannes Gutenberg University Mainz. The new findings could, the scientists believe, contribute to an environment-friendly and sustainable use of valuable marine natural resources.

Competition for the resources on the seabed has already begun; the industrialized countries have already staked their claims and marked off regions with large re-serves of raw materials. "This is a potential source of international conflict," believes Professor Werner Müller of the University of Mainz. Once we understand exactly how the deep-sea nodules and crusts are created, we might perhaps in the not too distant future be in the position to develop strains of microorganisms that could very specifically "grow" important raw materials for us. Müller has been investigating the submarine world for over 30 years and is regarded as a pioneer of sponge research in Germany. But the interests of the qualified molecular biologist are not restricted to sponges, which he considers to offer a virtually inexhaustible source of raw materials, starting with bioactive substances for medical use to silicates for optic pathways. In his eyes, bacteria and algae are also genuine little magicians.

Manganese nodules are formed on the sea floor at depths of 4,000 to 5,000 meters. In the last 10 million years or so, an estimated 300 billion tonnes of manganese has accumulated in the form of nodules. "This is quite astonishing when you consider that the concentration of manganese in seawater is vanishingly?small," says Müller. Besides manganese, the nodules (which resemble potato tubers) also contain iron and non-ferrous heavy metals which accumulate in layers. Once a tiny bio-seed has formed, metal ions attach themselves continuously to the outer layer. Working in cooperation with Chinese scientists, mainly Professor Dr X. H. Wang, Müller has now discovered what triggers this process. According to their findings, the bio-seeds are bacteria that have an additional protein layer, known as the S-layer, on their outer membrane. "The outermost stratum of the S-layer is an ideal organic matrix that not only protects microorganisms against harmful environmental effects but also facilitates the deposition of minerals." Müller and his research partners have found complete chains of bacteria with S-layers in manganese nodules that provided the basis for the synthesis of the biomaterials. "Once the primary layer is present, autocatalysis takes over and the material completes the process itself."

In the case of deep-sea crusts, a unicellular alga rather than a bacterium provides the bio-seed. The deep-sea crusts - also known as manganese or cobalt crusts - are found at depths of 800 to 2,400 meters and also contain significant quantities of valuable raw materials. They are created by coccolithophorides, a form of armoured algae that are completely encased in a protective shell of calcium carbonate. These algae live at a depth of around 100 meters. When they die, their protective shells fall to deeper levels where bonds with manganese ions are formed by means of chemi-cal transformation.

"Perhaps we can use nature as our model, so that in future we will also be able to exploit algae and bacteria to extract manganese and other metals from a seawater environment," explains Müller. This could help to defuse potential future conflict for resources and contribute to sustainable production, without damaging the deep-sea environment.

Original publication:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30 April 2009
Volume 27, 375-383; doi:10.1016/j.tibtech.2009.03.004

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>