Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria and algae act as biocatalysts for deep-sea raw material deposition

02.06.2009
Microorganisms trigger the formation of manganese nodules and manganese crusts - a model for future extraction of raw materials --- Publication in TRENDS IN BIOTECHNOLOGY

The sea floor is strewn with raw materials that could be very important in the future: Manganese and iron, but also rarer and more precious elements such as cobalt, copper, zinc and nickel, are present in great quantities in the form of deep-sea nodules and crusts. The depositions of such materials from seawater and sediment is the result of a process known as "biomineralization".

Microorganisms such as bacteria and algae contribute to this process of nodule and crust accretion and catalyze the accumulation of metals, as has been shown by new research at the Institute of Physiological Chemistry and Pathobiochemistry at Johannes Gutenberg University Mainz. The new findings could, the scientists believe, contribute to an environment-friendly and sustainable use of valuable marine natural resources.

Competition for the resources on the seabed has already begun; the industrialized countries have already staked their claims and marked off regions with large re-serves of raw materials. "This is a potential source of international conflict," believes Professor Werner Müller of the University of Mainz. Once we understand exactly how the deep-sea nodules and crusts are created, we might perhaps in the not too distant future be in the position to develop strains of microorganisms that could very specifically "grow" important raw materials for us. Müller has been investigating the submarine world for over 30 years and is regarded as a pioneer of sponge research in Germany. But the interests of the qualified molecular biologist are not restricted to sponges, which he considers to offer a virtually inexhaustible source of raw materials, starting with bioactive substances for medical use to silicates for optic pathways. In his eyes, bacteria and algae are also genuine little magicians.

Manganese nodules are formed on the sea floor at depths of 4,000 to 5,000 meters. In the last 10 million years or so, an estimated 300 billion tonnes of manganese has accumulated in the form of nodules. "This is quite astonishing when you consider that the concentration of manganese in seawater is vanishingly?small," says Müller. Besides manganese, the nodules (which resemble potato tubers) also contain iron and non-ferrous heavy metals which accumulate in layers. Once a tiny bio-seed has formed, metal ions attach themselves continuously to the outer layer. Working in cooperation with Chinese scientists, mainly Professor Dr X. H. Wang, Müller has now discovered what triggers this process. According to their findings, the bio-seeds are bacteria that have an additional protein layer, known as the S-layer, on their outer membrane. "The outermost stratum of the S-layer is an ideal organic matrix that not only protects microorganisms against harmful environmental effects but also facilitates the deposition of minerals." Müller and his research partners have found complete chains of bacteria with S-layers in manganese nodules that provided the basis for the synthesis of the biomaterials. "Once the primary layer is present, autocatalysis takes over and the material completes the process itself."

In the case of deep-sea crusts, a unicellular alga rather than a bacterium provides the bio-seed. The deep-sea crusts - also known as manganese or cobalt crusts - are found at depths of 800 to 2,400 meters and also contain significant quantities of valuable raw materials. They are created by coccolithophorides, a form of armoured algae that are completely encased in a protective shell of calcium carbonate. These algae live at a depth of around 100 meters. When they die, their protective shells fall to deeper levels where bonds with manganese ions are formed by means of chemi-cal transformation.

"Perhaps we can use nature as our model, so that in future we will also be able to exploit algae and bacteria to extract manganese and other metals from a seawater environment," explains Müller. This could help to defuse potential future conflict for resources and contribute to sustainable production, without damaging the deep-sea environment.

Original publication:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30 April 2009
Volume 27, 375-383; doi:10.1016/j.tibtech.2009.03.004

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

More articles from Life Sciences:

nachricht Enzyme with surprising dual function
24.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Flexibility and arrangement - the interaction of ribonucleic acid and water
24.01.2018 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>