Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria and algae act as biocatalysts for deep-sea raw material deposition

02.06.2009
Microorganisms trigger the formation of manganese nodules and manganese crusts - a model for future extraction of raw materials --- Publication in TRENDS IN BIOTECHNOLOGY

The sea floor is strewn with raw materials that could be very important in the future: Manganese and iron, but also rarer and more precious elements such as cobalt, copper, zinc and nickel, are present in great quantities in the form of deep-sea nodules and crusts. The depositions of such materials from seawater and sediment is the result of a process known as "biomineralization".

Microorganisms such as bacteria and algae contribute to this process of nodule and crust accretion and catalyze the accumulation of metals, as has been shown by new research at the Institute of Physiological Chemistry and Pathobiochemistry at Johannes Gutenberg University Mainz. The new findings could, the scientists believe, contribute to an environment-friendly and sustainable use of valuable marine natural resources.

Competition for the resources on the seabed has already begun; the industrialized countries have already staked their claims and marked off regions with large re-serves of raw materials. "This is a potential source of international conflict," believes Professor Werner Müller of the University of Mainz. Once we understand exactly how the deep-sea nodules and crusts are created, we might perhaps in the not too distant future be in the position to develop strains of microorganisms that could very specifically "grow" important raw materials for us. Müller has been investigating the submarine world for over 30 years and is regarded as a pioneer of sponge research in Germany. But the interests of the qualified molecular biologist are not restricted to sponges, which he considers to offer a virtually inexhaustible source of raw materials, starting with bioactive substances for medical use to silicates for optic pathways. In his eyes, bacteria and algae are also genuine little magicians.

Manganese nodules are formed on the sea floor at depths of 4,000 to 5,000 meters. In the last 10 million years or so, an estimated 300 billion tonnes of manganese has accumulated in the form of nodules. "This is quite astonishing when you consider that the concentration of manganese in seawater is vanishingly?small," says Müller. Besides manganese, the nodules (which resemble potato tubers) also contain iron and non-ferrous heavy metals which accumulate in layers. Once a tiny bio-seed has formed, metal ions attach themselves continuously to the outer layer. Working in cooperation with Chinese scientists, mainly Professor Dr X. H. Wang, Müller has now discovered what triggers this process. According to their findings, the bio-seeds are bacteria that have an additional protein layer, known as the S-layer, on their outer membrane. "The outermost stratum of the S-layer is an ideal organic matrix that not only protects microorganisms against harmful environmental effects but also facilitates the deposition of minerals." Müller and his research partners have found complete chains of bacteria with S-layers in manganese nodules that provided the basis for the synthesis of the biomaterials. "Once the primary layer is present, autocatalysis takes over and the material completes the process itself."

In the case of deep-sea crusts, a unicellular alga rather than a bacterium provides the bio-seed. The deep-sea crusts - also known as manganese or cobalt crusts - are found at depths of 800 to 2,400 meters and also contain significant quantities of valuable raw materials. They are created by coccolithophorides, a form of armoured algae that are completely encased in a protective shell of calcium carbonate. These algae live at a depth of around 100 meters. When they die, their protective shells fall to deeper levels where bonds with manganese ions are formed by means of chemi-cal transformation.

"Perhaps we can use nature as our model, so that in future we will also be able to exploit algae and bacteria to extract manganese and other metals from a seawater environment," explains Müller. This could help to defuse potential future conflict for resources and contribute to sustainable production, without damaging the deep-sea environment.

Original publication:
Xiaohong Wang, Werner E.G. Müller
Marine biominerals: perspectives and challenges for polymetallic nodules and crusts
Trends in Biotechnology, 30 April 2009
Volume 27, 375-383; doi:10.1016/j.tibtech.2009.03.004

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/
http://www.cell.com/trends/biotechnology/abstract/S0167-7799(09)00075-4

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>