Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bacteria acquire resistance from competitors


Bacteria not only develop resistance to antibiotics, they also can pick it up from their rivals. In a recent publication in "Cell Reports", Researchers from the Biozentrum of the University of Basel have demonstrated that some bacteria inject a toxic cocktail into their competitors causing cell lysis and death. Then, by integrating the released genetic material, which may also carry drug resistance genes, the predator cell can acquire antibiotic resistance.

The frequent and sometimes careless use of antibiotics leads to an increasingly rapid spread of resistance. Hospitals are a particular hot spot for this. Patients not only introduce a wide variety of pathogens, which may already be resistant but also, due to the use of antibiotics to combat infections, hospitals may be a place where anti-microbial resistance can develop and be transferred from pathogen to pathogen.

The T6SS (green, magenta) mediated killing and lysis of competing bacteria can lead to DNA release (cyan) and subsequent gene transfer.

University of Basel, Biozentrum

One of these typical hospital germs is the bacterium Acinetobacter baumannii. It is also known as the "Iraq bug" because multidrug-resistant bacteria of this species caused severe wound infections in American soldiers during the Iraq war.

Multidrug-resistant bacteria due to gene exchange

The emergence and spread of multidrug resistance could be attributed, among other things, to the special skills of certain bacteria: Firstly, they combat their competitors by injecting them with a cocktail of toxic proteins, so-called effectors, using the type VI secretion system (T6SS), a poison syringe. And secondly, they are able to uptake and reuse the released genetic material.

In the model organism Acinetobacter baylyi, a close relative of the Iraq bug, Prof. Marek Basler's team at the Biozentrum of the University of Basel, has now identified five differently acting effectors. "Some of these toxic proteins kill the bacterial competition very effectively, but do not destroy the cells," explains Basler. "Others severely damage the cell envelope, which leads to lysis of the attacked bacterium and hence the release of its genetic material."

The predator bacteria take up the released DNA fragments. If these fragments carry certain drug resistance genes, the specific resistance can be conferred upon the new owner. As a result, the antibiotic is no longer effective and the bacterium can reproduce largely undisturbed.

Pathogens with such abilities are a major problem in hospitals, as through contact with other resistant bacteria they may accumulate resistance to many antibiotics - the bacteria become multidrug-resistant. In the worst case, antibiotic treatments are no longer effective, thus nosocomial infections with multidrug-resistant pathogens become a deadly threat to patients.

Toxic proteins and antitoxins

"The T6SS, as well as a set of different effectors, can also be found in other pathogens such as those which cause pneumonia or cholera," says Basler. Interestingly, not all effectors are sufficient to kill the target cell, as many bacteria have developed or acquired antitoxins - so-called immunity proteins.

"We have also been able to identify the corresponding immunity proteins of the five toxic effectors in the predator cells. For the bacteria it makes absolute sense to produce not only a single toxin, but a cocktail of various toxins with different effects," says Basler. “This increases the likelihood that the rivals can be successfully eliminated and in some cases also lysed to release their DNA.”

Conquest of new environmental niches

Antibiotics and anti-microbial resistance have existed for a long time. They developed through the coexistence of microorganisms and enabled bacteria to defend themselves against enemies or to eliminate competitors. This is one of the ways in which bacteria can conquer and colonize new environmental niches. With the use of antibiotics in medicine, however, the natural ability to develop resistance has become a problem. This faces researchers with the challenge of continually developing new antibiotics and slowing down the spread of drug resistance.

Original article

Peter D. Ringel, Di Hu, Marek Basler. The role of Type VI Secretion System Effectors in Target Cell Lysis and Subsequent Horizontal Gene Transfer.
Cell Reports (2017), doi: 10.1016/j.celrep.2017.12.020

Further Information

Prof. Dr. Marek Basler, University of Basel, Biozentrum, phone: +41 61 207 21 10, email:

Dr. Katrin Bühler, University of Basel, Biozentrum, Communications, phone: +41 61 207 09 74, email:

Weitere Informationen:

Dr. Katrin Bühler | Universität Basel

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>