Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to life after 1,500 years

18.03.2014

Moss brought back to life after 1,500 years frozen in ice

Researchers from the British Antarctic Survey and Reading University have demonstrated that, after over 1,500 years frozen in Antarctic ice, moss can come back to life and continue to grow.

For the first time, this vital part of the ecosystem in both polar regions has been shown to have the ability to survive century to millennial scale ice ages. This provides exciting new insight into the survival of life on Earth.

The team, reporting in Current Biology this week, observed moss regeneration after at least 1,530 years frozen in permafrost. This is the first study to show such long-term survival in any plant; similar timescales have only been seen before in bacteria.

... more about:
»Antarctic »Antarctica »BAS »Biology »Earth »Polar »ecosystem »mosses »survive

Mosses are known to survive environmental extremes in the short-term with previous evidence confirming up to a 20 year timescale for survival. Their potential to survive much longer timescales had not previously been examined.

Mosses are an important part of the biology of both polar regions. They are the dominant plants over large areas and are a major storer of fixed carbon, especially in the north.

Co-author Professor Peter Convey from the British Antarctic Survey explains:

"What mosses do in the ecosystem is far more important than we would generally realise when we look at a moss on a wall here for instance. Understanding what controls their growth and distribution, particularly in a fast-changing part of the world such as the Antarctic Peninsula region, is therefore of much wider significance."

The team took cores of moss from deep in a frozen moss bank in the Antarctic. This moss would already have been at least decades old when it was first frozen. They sliced the frozen moss cores very carefully, keeping them free from contamination, and placed them in an incubator at a normal growth temperature and light level.

After only a few weeks, the moss began to grow. Using carbon dating, the team identified the moss to be at least 1,530 years of age, and possibly even older, at the depth where the new growth was seen.

According to Professor Convey:

"This experiment shows that multi-cellular organisms, plants in this case, can survive over far longer timescales than previously thought. These mosses, a key part of the ecosystem, could survive century to millennial periods of ice advance, such as the Little Ice Age in Europe.

"If they can survive in this way, then recolonisation following an ice age, once the ice retreats, would be a lot easier than migrating trans-oceanic distances from warmer regions. It also maintains diversity in an area that would otherwise be wiped clean of life by the ice advance.

"Although it would be a big jump from the current finding, this does raise the possibility of complex life forms surviving even longer periods once encased in permafrost or ice."

###

Issued by the British Antarctic Survey Press Office.

Contact:

Paul Seagrove
Tel: +44 (0)1223 221414
Mob: +44 (0)7736 921693
Email: psea@bas.ac.uk

Author contact:

Peter Convey
British Antarctic Survey
Tel: +44 (0) 1223 221588
Email: pcon@bas.ac.uk

Reading press office contact:

James Barr
Tel: +44 (0) 118 378 7115
Email: j.w.barr@reading.ac.uk

Notes for editors

The paper: Millennial timescale regeneration in a moss from Antarctica by Esme Roads, Royce E. Longton and Peter Convey is published in Current Biology on Monday 17 March 2014. View the paper at

Images are available on request.

Permafrost: Rock or soil that remains frozen throughout the year.

British Antarctic Survey (BAS), an institute of the Natural Environment Research Council (NERC), delivers and enables world-leading interdisciplinary research in the Polar Regions. Its skilled science and support staff based in Cambridge, Antarctica and the Arctic, work together to deliver research that uses the Polar Regions to advance our understanding of Earth as a sustainable planet. Through its extensive logistic capability and know-how BAS facilitates access for the British and international science community to the UK polar research operation. Numerous national and international collaborations, combined with an excellent infrastructure help sustain a world leading position for the UK in Antarctic affairs. For more information visit http://www.antarctica.ac.uk.

Paul Seagrove | EurekAlert!

Further reports about: Antarctic Antarctica BAS Biology Earth Polar ecosystem mosses survive

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>