Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to basics: Scientists discover a fundamental mechanism for cell organization

26.05.2009
Scientists have discovered that cells use a very simple phase transition -- similar to water vapor condensing into dew -- to assemble and localize subcellular structures that are involved in formation of the embryo.

The discovery, which was made during the 2008 Physiology course at the Marine Biological Laboratory (MBL), is reported in the May 21 early online edition of Science by Clifford P. Brangwynne and Anthony A. Hyman of the Max Planck Institute for Molecular Cell Biology and Genetics in Dresden, Germany, and their colleagues, including Frank Jülicher of the Max Planck Institute for the Physics of Complex Systems, also in Dresden.

Working with the worm C. elegans, the scientists found that subcellular structures called P granules, which are thought to specify the "germ cells" that ultimately give rise to sperm or eggs, are liquid droplets that transition between a dissolved or condensed state. In newly fertilized one-cell embryos, the P granules are dissolving throughout the cell, like water droplets at high temperature. But prior to the first cell division, the P granules rapidly condense at one end of the cell, as if the temperature were suddenly lowered there. The progenitor germ cell subsequently forms where the P granules have condensed.

"This kind of phase transition could potentially be working for many other subcellular structures similar to P granules," Brangwynne says. P granules are ribonucleoprotein assemblies (RNPs), and a given cell may contain dozens of different types of RNPs.

"It is interesting to think about this in the context of evolution and the origin of life," he says. "What we have found is that, in some cases, simple physical-chemical mechanisms, such as a classic phase transition, give rise to subcellular structure…This is likely the kind of thing that happened in the so-called primordial soup; but it's not surprising that even highly evolved cells continue to take advantage of such mechanisms."

The insight emerged when Brangwynne, a biophysicist who was a teaching assistant in the MBL Physiology course, watched a movie of P granules fusing that had been made by a student in the course, David Courson of the University of Chicago. "We were looking at that and thinking, man, that looks exactly like two liquid droplets fusing," Brangwynne says. They began making measurements of liquid-type behaviors in P granules, and made the first estimates of P granule viscosity and surface tension. By the end of the course they were "90 percent sure" that P granules are liquid droplets that localize in the cell by controlled dissolution and condensation, a concept that Brangwynne further confirmed after he returned to Dresden.

Brangwynne credits the discovery to the "dynamic nature" of the MBL Physiology course, where scientists from different fields (biology, physics, computer science) work intensively together on major research questions in cell biology. In addition to Courson, the other co-authors of the Science paper who were in the Physiology course are Hyman, and Jülicher, who were Physiology faculty members, and Jöbin Gharakhani, who was a teaching assistant. The paper also credits Physiology course co-director Tim Mitchison for valuable discussions.

"There are so many molecules in the cell, and we are coming out of the age of cataloguing them all, which was critical, to find out who the players are," Brangwynne says. "Now we are putting it all together. What are the principles that come out of these complex interactions (between molecules)? In the end, it may be relatively simple principles that help us understand what is really happening."

Citation:

Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009) Germline P Granules are Liquid Droplets that Localize by Controlled Dissolution/Condensation. Early publication online by the journal Science, at the Science Express web site: http://www.sciencexpress.org.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>