Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back to basics: Scientists discover a fundamental mechanism for cell organization

26.05.2009
Scientists have discovered that cells use a very simple phase transition -- similar to water vapor condensing into dew -- to assemble and localize subcellular structures that are involved in formation of the embryo.

The discovery, which was made during the 2008 Physiology course at the Marine Biological Laboratory (MBL), is reported in the May 21 early online edition of Science by Clifford P. Brangwynne and Anthony A. Hyman of the Max Planck Institute for Molecular Cell Biology and Genetics in Dresden, Germany, and their colleagues, including Frank Jülicher of the Max Planck Institute for the Physics of Complex Systems, also in Dresden.

Working with the worm C. elegans, the scientists found that subcellular structures called P granules, which are thought to specify the "germ cells" that ultimately give rise to sperm or eggs, are liquid droplets that transition between a dissolved or condensed state. In newly fertilized one-cell embryos, the P granules are dissolving throughout the cell, like water droplets at high temperature. But prior to the first cell division, the P granules rapidly condense at one end of the cell, as if the temperature were suddenly lowered there. The progenitor germ cell subsequently forms where the P granules have condensed.

"This kind of phase transition could potentially be working for many other subcellular structures similar to P granules," Brangwynne says. P granules are ribonucleoprotein assemblies (RNPs), and a given cell may contain dozens of different types of RNPs.

"It is interesting to think about this in the context of evolution and the origin of life," he says. "What we have found is that, in some cases, simple physical-chemical mechanisms, such as a classic phase transition, give rise to subcellular structure…This is likely the kind of thing that happened in the so-called primordial soup; but it's not surprising that even highly evolved cells continue to take advantage of such mechanisms."

The insight emerged when Brangwynne, a biophysicist who was a teaching assistant in the MBL Physiology course, watched a movie of P granules fusing that had been made by a student in the course, David Courson of the University of Chicago. "We were looking at that and thinking, man, that looks exactly like two liquid droplets fusing," Brangwynne says. They began making measurements of liquid-type behaviors in P granules, and made the first estimates of P granule viscosity and surface tension. By the end of the course they were "90 percent sure" that P granules are liquid droplets that localize in the cell by controlled dissolution and condensation, a concept that Brangwynne further confirmed after he returned to Dresden.

Brangwynne credits the discovery to the "dynamic nature" of the MBL Physiology course, where scientists from different fields (biology, physics, computer science) work intensively together on major research questions in cell biology. In addition to Courson, the other co-authors of the Science paper who were in the Physiology course are Hyman, and Jülicher, who were Physiology faculty members, and Jöbin Gharakhani, who was a teaching assistant. The paper also credits Physiology course co-director Tim Mitchison for valuable discussions.

"There are so many molecules in the cell, and we are coming out of the age of cataloguing them all, which was critical, to find out who the players are," Brangwynne says. "Now we are putting it all together. What are the principles that come out of these complex interactions (between molecules)? In the end, it may be relatively simple principles that help us understand what is really happening."

Citation:

Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Jülicher, F., and Hyman, A.A. (2009) Germline P Granules are Liquid Droplets that Localize by Controlled Dissolution/Condensation. Early publication online by the journal Science, at the Science Express web site: http://www.sciencexpress.org.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>