Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby hearts need rhythm to develop correctly

19.02.2014
To develop correctly, baby hearts need rhythm...even before they have blood to pump.

“We have discovered that mechanical forces are important when making baby hearts,” said Mary Kathryn Sewell-Loftin, a Vanderbilt graduate student working with a team of Vanderbilt engineers, scientists and clinicians attempting to grow replacement heart valves from a patient’s own cells.


Microphotograph of a chick embryo clearly shows the U-shaped tube from which the heart develops. At this stage of heart is the size of a comma on a printed page. (M.K. Sewell-Lofkin / Vanderbilt)

In an article published last month in the journal Biomaterials the team reported that they have taken an important step toward this goal by determining that the mechanical forces generated by the rhythmic expansion and contraction of cardiac muscle cells play an active role in the initial stage of heart valve formation.

A heart valve is a marvelous device. It consists of two or three flaps, called leaflets, which open and close to control the flow of blood through the heart. It is designed well enough to cycle two to three billion times in a person’s lifetime. (Humans and chickens are outliers: Most other animals, large and small, have hearts that beat about one billion times in their lives.) However, heart valves can be damaged by diseases such as rheumatic fever and cancer, aging, heart attacks and birth defects.

“For the last 15 years, people have been trying to create a heart valve out of artificial tissue using brute-force engineering methods without any success,” said Assistant Professor of Biomedical Engineering W. David Merryman. “We decided to take a step back and study how heart valves develop naturally so we can figure out how to duplicate the process.” To do so, they designed a series of experiments with chickens, whose hearts develop in a fashion similar to the human heart.

“The discovery that the deformations produced by the beating cardiac muscle cells are important provides an entirely new perspective on the process,” said Merryman, who directed the three-year study.

The Vanderbilt effort is part of a broader program to develop artificial organs named the Systems-based Consortium for Organ Design and Engineering (SysCODE). It is a National Institutes of Health “Roadmap” initiative to speed the movement of scientific discoveries from the bench to the bedside.

“This is the second major advance that we’ve made,” said Professor of Pharmacology Joey Barnett, co-principal investigator of the heart valve project.

Last spring, the Vanderbilt team announced that they had identified the unique genes and molecular pathways associated with valve formation.

“These included both genes and pathways that we knew about and several that were previously unknown,” said Barnett, who has studied heart valves for more than 20 years.

“The genetic study gave us the list of the basic parts – the hardware – required to build a heart valve and this latest study provides us with the information we need about the environment that is required,” said the biologist. “With this information, we should have what we need to create valvular interstitial cells (VICs), that are the basic building blocks of heart valves.”

The heart starts out as a simple, U-shaped tube of tissue. (In the case of the chicken embryo, it is about the size of a comma on the printed page.) The tube has three layers. The outer layer is made up of cardiac muscle cells that begin pulsing before blood vessels form and attach to the heart. The inner layer consists of specialized endothelial cells, the type of cells that line the interior of blood vessels. Sandwiched between the two is a layer of a complex gelatinous material called cardiac jelly.

At the locations of the inflow and outflow valves, the walls of the tube thicken to form “cushions” of cardiac jelly. After the cushions are formed, the endothelial cells in the region embed themselves in the cushion and transform into VICs. The VICs, in turn, begin guiding the process that transforms the cardiac jelly in the cushion into valve leaflets.

One of the standard laboratory methods for studying the early stages of heart development is to use microsurgery to remove a chick heart from an embryo and place it in a cell-culture dish filled with collagen gel.

However, the method was not suitable for studying mechanical forces so Sewell-Loftin had to modify it substantially. She found one key was to include a complex sugar called hyaluronic acid, which is found in cardiac jelly.

Next, she had to devise a method to measure the amount of deformation that the pulsation of the heart muscle cells causes in the gel. She did so by creating a computer program that analyzed sequences of microscope images of the gel surface to estimate the forces caused by the pulsing cells.

When Sewell-Loftin compared her maps with the locations where VICs were being formed, she found that cells were transforming preferentially in areas of high strain.

The team’s next step is to collaborate with a researcher who works with induced pluripotent stem cells – a type of stem cell that can be generated directly from adult cells – to produce endothelial cells. Once they have these cells, they hope to produce human VICs. In addition to guiding the initial formation of the heart, VICs are known to play a role in maintaining valve health in adults. So they could provide a better way to repair calcified heart valves, the major cause of open-heart surgery in adults, the researchers speculate.

Once they can make human VICs, there is a good chance that they will create artificial human heart valves when they are placed in a properly designed bioreactor, the researchers anticipate. And once they have artificial human heart valves, they could be used to replace defective valves when needed in the 40,000 babies born with congenital heart defects each year. Hopefully, these artificial valves would grow with the child. Current replacement valves are made out of plastic so they do not grow with a child. That means these young patients must endure multiple surgeries, which multiplies their risk of harmful complications.

H. Scott Baldwin, the Katrina Overall McDonald Chair of Pediatrics, graduate student Daniel M. DeLaughter, undergraduate student Jon R. Peacock, and Christopher Brown, research assistant professor of pediatrics, contributed to the study.

The research was supported by grants from the American Heart Association, National Science Foundation grant 1055384 and National Institutes of Health grants HL094707 and HL092551. Tyson Foods, Inc. donated the fertilized chicken eggs used in the study.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.]

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>