Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

B cells produce antibodies 'when danger calls, but not when it whispers'

16.05.2014

The specialized immune cells only act when specific threshold is reached

The immune system's B cells protect us from disease by producing antibodies, or "smart bullets," that specifically target invaders such as pathogens and viruses while leaving harmless molecules alone. But how do B cells determine whether a threat is real and whether to start producing these weapons?


Mutations in the B cell's key molecular circuit in chickens, shown in green, resulted in ambiguity about whether the threshold, where the 0 line is, had been reached. Without these mutations, there were no such ambiguities, as the blue dots show.

Credit: Japan's RIKEN Center for Integrative Medical Sciences

An international team of life scientists shows in the May 16 issue of the journal Science how and why these cells respond only to true threats.

"It is critical for B cells to respond either fully or not at all. Anything in between causes disease," said the study's senior author, Alexander Hoffmann, a professor of microbiology, immunology and molecular genetics in the UCLA College of Letters and Science. "If B cells respond wimpily when there is a real pathogen, you have immune deficiency, and if they respond inappropriately to something that is not a true pathogen, then you have autoimmune disease."

The antibodies produced by B cells attack antigens — molecules associated with pathogens, microbes and viruses. A sensor on the cell's surface is meant to recognize a specific antigen, and when the sensor encounters that antigen, it sends a signal that enables the body's army of B cells to respond rapidly. However, there may be similar molecules nearby that are harmless. The B cells should ignore their signals — something they fail to do in autoimmune diseases.

So how do the B cells decide whether to start producing antibodies?

"These immune cells are somewhat hard of hearing, which is appropriate because the powerful and potentially destructive immune responses should jump into action only when danger calls, not when it whispers," said Hoffmann.

The B cells make their response only when a rather high threshold is reached, Hoffmann and his colleagues report. A small or moderate signal — from a harmless molecule, for instance — gets no response, which reduces the risk of false alarms.

"It's like your car's airbag, which won't be deployed unless you really need it," Hoffmann said. "You can imagine that if the airbag were poorly designed and if you brake very hard or have a slight accident, it could deploy slowly and be useless. You want it to deploy fully or not at all. That is what the B cell does when deciding whether it confronts something that is truly pathogenic or harmless. No B cell responds partially."

We have billions of B cells, and each one creates this threshold through a molecular circuit involving two molecules. One of these molecules, known as CARMA1, activates the other, IKKb, which further activates the first one.

"Positive feedback between the two causes infinite growth, and once you trigger it, there is no way to turn it off until the smart bullets are shot," said Hoffmann, whose research aims to understand and decode the language of cells. "But a second feature of positive feedback is that it can create a threshold only above which this runaway activation occurs."

He and his colleagues developed mathematical equations based on the molecular circuit and were then able to simulate, virtually, B cell responses. The team's resulting predictions were tested experimentally by their collaborators at the Laboratory for Integrated Cellular Systems at Japan's RIKEN Center for Integrative Medical Sciences. In one part of the study, the researchers made specific mutations in IKKb so that it could not signal back to CARMA1. They also made mutations in CARMA1 to prevent it from receiving the signal from IKKb. In both cases, the B cells responded partially, some of the time, like a weakly inflating airbag.

"It became a gray-zone response rather than a black-and-white response," said Hoffmann, who constructs mathematical models of biology.

The research could lead to better diagnosis of disease if patients with an autoimmune disorder, such as lupus, have a defect in this molecular circuit.

###

Co-authors of the study included Mariko Okada-Hatakeyama, a professor at Japan's RIKEN Center, and Marcelo Behar, a postdoctoral scholar in Hoffmann's laboratory who has now accepted a position as an assistant professor at the University of Texas, Austin.

Funding sources for the research included federal grants to Hoffmann by the National Cancer Institute and National Institute of Allergy and Infectious Diseases (grants R01CA141722, R01AI083453), both part of the National Institutes of Health, and funding to Okada-Hatakeyama from the Cell Innovation Program of Japan's Ministry of Education, Culture, Sports, Science and Technology, and the Japan Society for the Promotion of Science.

Hoffmann's research: Correcting cellular miscommunication

Many diseases are related to miscommunication in cells, Hoffmann said. In other research, he and colleagues showed for the first time that it is possible to correct a certain type of cellular miscommunication — one involving the connection of receptors to genes controlled during inflammation — without severe side effects. That research, federally funded by the NIH, was published in the journal Cell on Oct. 10, 2013.

Hoffmann and his colleagues may be able to develop therapeutic strategies that do not simply inhibit or shut down faulty communication lines in diseased cells but actually correct the misunderstanding. (They have already accomplished this with cells in a Petri dish. Their next step is to see if this can be done in an animal, and then in a human.)

Stuart Wolpert | Eurek Alert!

Further reports about: Cell RIKEN autoimmune immune mutations pathogens produce producing threshold viruses

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>