Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Re-awakening old genes to help in the fight against HIV

A new vaginal cream containing a reawakened protein could someday prevent the transmission of HIV.

Scientists at the University of Central Florida in Orlando have revived a dormant gene found in humans and coaxed it to produce retrocyclin, a protein that resists HIV.

Lead scientist Alexander Cole used aminoglycosides, drugs commonly used to fight bacterial infections, to trigger the production of the sleeping protein expressed by the retrocyclin gene.

"It could make a huge difference in the fight against HIV," Cole said. "Much more work would be needed to demonstrate the safety and effectiveness of this approach. We would certainly have to have human trials, but these findings represent a promising step in that direction."

Findings from his three-year investigation are published in this month's PLOS Biology, a well-respected scientific journal.

HIV is the virus that causes AIDS. The disease, most often transmitted sexually, affects 4.3 million people worldwide, according to the World Health Organization. About 14,560 people die annually from HIV-related complications each year in the United States alone, according to the Centers for Disease Control.

Dozens of scientists around the world are looking for ways to prevent the transmission of the disease. Cole's journey into this area of research began while he was a postdoctoral fellow in the Department of Medicine at the University of California at Los Angeles. While there, he and his colleagues discovered that similar retrocyclin proteins found in early primates appeared to prevent HIV infections in cell cultures. The same gene exists in humans, but because of a mutation, it no longer produces the protein.

Now, in collaboration with researchers at UCLA, the Centers for Disease Control and his team at UCF, Cole has found that restoring the production of retrocyclins prevents HIV entry. He found a way to get the gene to produce the retrocyclins and then showed that the retrocyclins appear to prevent the transmission of HIV. He applied aminoglycoside antibiotics to vaginal tissues and cervical cells in his lab and found the antibiotic appears to stimulate those cells and tissues to produce retrocyclins on their own.

He said there is a good possibility the aminoglycoside antibiotics will be used in a cream or gel format that could someday be a simple way to prevent the transmission of HIV from men to women.

Cole arrived at UCF in 2003 and continues his work here with more than $4 million in grants from the National Institutes of Health.

Cole has degrees from the College of William and Mary and The University of Medicine and Dentistry of New Jersey. He completed a postdoctoral fellowship at UCLA, and he was an assistant professor in the Department of Medicine at UCLA before teaching at UCF.

He has published more than 50 peer-reviewed articles and has been a grant reviewer for several agencies, including the NIH, the Wellcome Trust and the National Science Foundation.

UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the 5th largest in the nation with more than 50,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy.

Zenaida Gonzalez Kotala | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>