Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Awaiting orders to retaliate

27.06.2011
Signaling proteins that help immune cells develop also enable those cells to mount an effective counterattack against infections

When immune system B cells are alerted to the presence of a threat within the body, they form structures called germinal centers, which serve as ad hoc headquarters for marshaling a targeted immune response.

These cells subsequently differentiate into plasma cells, which produce antibodies directed against foreign entities, or memory cells, which retain the capacity to become plasma cells if the same threat reappears in the future.

The extracellular signal-regulated kinase proteins (ERK1/2) are integrally involved in the early stages of this process, making it a challenge to assess their subsequent contributions. “If we delete both ERK genes entirely, differentiation of B cells is impaired and we cannot analyze the function of ERKs during the immune response,” explains Kohei Kometani, a researcher in Tomohiro Kurosaki’s group at the RIKEN Research Center for Allergy and Immunology, Yokohama.

To address this challenge, Tomoharu Yasuda and Kometani developed transgenic mice in which ERK expression is lost only after the initial differentiation of B cells1. Their initial results were striking; following vaccination with a highly immunogenic antigen, ERK-deficient mice showed a 10- to 40-fold reduction in antibody production. This selective deletion of the two ERK genes led to a sharp decrease in the number of antigen-specific plasma cells but had little effect on memory cell counts. The researchers determined that these signaling factors appear to directly facilitate plasma cell maturation. “It was surprising that ERKs regulate differentiation but do not affect cell proliferation, because many people think of the ERKs as important molecules for cell growth,” explains Kometani.

Several proteins known as transcription factors contribute to the maturation of plasma cells by turning key genes on or off. Blimp-1 is among the most important of these, as it also helps to inhibit transcription factors that maintain germinal center B cells. Yasuda and Kometani determined that the gene encoding Blimp-1 is a primary target of ERK signaling. They also identified another protein, Elk-1, which appears to be an important intermediary in this process.

As their findings also indicate that other signaling pathways are likely to intersect with ERK signaling in this developmental process, Yasuda and colleagues hope to explore this complexity in the future. “Harmful or excess antibody production are sometimes the cause of autoimmunity and allergy,” he says, “and from this point of view, it may be interesting to check the involvement of not only the ERKs, but also the molecules upstream and downstream.”

The corresponding author for this highlight is based at the Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology

Reference

Yasuda, T., Kometani, K., Takahashi, N., Imai, Y., Aiba, Y. & Kurosaki, T. ERKs induce expression of the transcriptional repressor Blimp-1 and subsequent plasma cell differentiation. Science Signaling 4, ra25 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>