Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Awaiting orders to retaliate

27.06.2011
Signaling proteins that help immune cells develop also enable those cells to mount an effective counterattack against infections

When immune system B cells are alerted to the presence of a threat within the body, they form structures called germinal centers, which serve as ad hoc headquarters for marshaling a targeted immune response.

These cells subsequently differentiate into plasma cells, which produce antibodies directed against foreign entities, or memory cells, which retain the capacity to become plasma cells if the same threat reappears in the future.

The extracellular signal-regulated kinase proteins (ERK1/2) are integrally involved in the early stages of this process, making it a challenge to assess their subsequent contributions. “If we delete both ERK genes entirely, differentiation of B cells is impaired and we cannot analyze the function of ERKs during the immune response,” explains Kohei Kometani, a researcher in Tomohiro Kurosaki’s group at the RIKEN Research Center for Allergy and Immunology, Yokohama.

To address this challenge, Tomoharu Yasuda and Kometani developed transgenic mice in which ERK expression is lost only after the initial differentiation of B cells1. Their initial results were striking; following vaccination with a highly immunogenic antigen, ERK-deficient mice showed a 10- to 40-fold reduction in antibody production. This selective deletion of the two ERK genes led to a sharp decrease in the number of antigen-specific plasma cells but had little effect on memory cell counts. The researchers determined that these signaling factors appear to directly facilitate plasma cell maturation. “It was surprising that ERKs regulate differentiation but do not affect cell proliferation, because many people think of the ERKs as important molecules for cell growth,” explains Kometani.

Several proteins known as transcription factors contribute to the maturation of plasma cells by turning key genes on or off. Blimp-1 is among the most important of these, as it also helps to inhibit transcription factors that maintain germinal center B cells. Yasuda and Kometani determined that the gene encoding Blimp-1 is a primary target of ERK signaling. They also identified another protein, Elk-1, which appears to be an important intermediary in this process.

As their findings also indicate that other signaling pathways are likely to intersect with ERK signaling in this developmental process, Yasuda and colleagues hope to explore this complexity in the future. “Harmful or excess antibody production are sometimes the cause of autoimmunity and allergy,” he says, “and from this point of view, it may be interesting to check the involvement of not only the ERKs, but also the molecules upstream and downstream.”

The corresponding author for this highlight is based at the Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology

Reference

Yasuda, T., Kometani, K., Takahashi, N., Imai, Y., Aiba, Y. & Kurosaki, T. ERKs induce expression of the transcriptional repressor Blimp-1 and subsequent plasma cell differentiation. Science Signaling 4, ra25 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>