Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New avenue for treating colon cancer

10.02.2012
Research led by UC Riverside cell biologists describes mechanism by which some people may be more susceptible to colon cancer

An international research team led by cell biologists at the University of California, Riverside has uncovered a new insight into colon cancer, the third leading cause of cancer-related deaths in the United States. The research provides potential new avenues for diagnosing and treating the disease.

Led by Frances Sladek at UC Riverside and Graham Robertson at the University of Sydney, Australia, the team analyzed about 450 human colon cancer specimens and found that in nearly 80 percent of them the variants of a gene, HNF4A, are out of balance.

Human beings express several variants of the HNF4A gene, classified as P1 and P2 variants. Some tissues, like liver, have just one type of variant but the colon has both P1 and P2 variants. The P1 variant is found in the nuclei of cells in the normal colon but in the human colon cancer samples this variant is frequently either absent or located outside of the nucleus and, presumably, no longer functional.

Using human colon cancer cell lines and in vitro assays, the researchers found that the imbalance observed in the human tumor tissues seemed to be the result of a complex, multi-step process by an enzyme, Src kinase. Src kinase has been known to be activated in colon cancer but, until now, it was not known to act on the HNF4a protein (HNF4A is the gene, a stretch of DNA; HNF4a is the protein encoded by HNF4A). The UCR group found that activated Src modifies the P1 but not the P2 variant. The net result is loss of the P1 variant in the nuclei of cells in the colon.

Study results appeared online last week in the Proceedings of the National Academy of Sciences.

"Loss of nuclear P1 HNF4a protein in the colon may be an early sign of colon cancer," explained Sladek, a professor of cell biology and toxicologist. "A healthy colon has a good but delicate balance of the two HNF4a variants. If you could prevent the loss of the P1 variant via drugs, you might be able to maintain a normal colon and prevent colon cancer."

The researchers found another factor that increases a person's susceptibility to the disease: certain "single nucleotide polymorphisms" or SNPs located in the HNF4A gene. An SNP is a DNA sequence variation — a minor change in the genomic sequence that accounts for the variations we see between individuals. SNPs are the most common type of genetic variation among people.

"Individuals with certain SNPs may be more susceptible to colon cancer," said Karthikeyani Chellappa, a postdoctoral researcher in Sladek's lab and the first author of the research paper. "That's because these SNPs result in a greater amount of modification and a faster degradation of HNF4a by Src, at least in cell-based assays. It still needs to be investigated, though, whether individuals carrying these SNPs are indeed more susceptible to colon cancer."

Sladek noted that drugs are already available for inhibiting the activity of Src kinase.

"Some of these drugs are in clinical trials for colon cancer," she said. "It would be exciting to determine whether these drugs can maintain the P1 HNF4a protein levels, as well as inhibit the Src kinase activity."

A multifactorial disease influenced by genetics and the environment, colon cancer starts as a small polyp in the large intestine (colon) or the rectum (end of the colon). While most of the polyps are benign, some do turn cancerous. With proper screening, the disease can be detected early, when it is most curable.

Sladek, Chellappa and Robertson were joined in the research by Songqin Pan and Jake M. Schnabl at UCR; Lucy Jankova, Caroline L-S. Fung, Charles Chan, Owen F. Dent and Stephen J. Clarke at the University of Sydney, Australia; and Yann Brelivet of the Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Robertson and the Australian members of the team performed all the analysis of the human tumor samples.

The research was supported in part by a National Institutes of Health grant to Sladek.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call 951-UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>