Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why Are Autumn Leaves Red in America and Yellow in Europe?

Walking outdoors in the fall, the splendidly colorful leaves adorning the trees are a delight to the eye.

In Europe these autumn leaves are mostly yellow, while the United States and East Asia boast lustrous red foliage. But why is it that there are such differences in autumnal hues around the world?

A new theory provided by Prof. Simcha Lev-Yadun of the Department of Science Education- Biology at the University of Haifa-Oranim and Prof. Jarmo Holopainen of the University of Kuopio in Finland and published in the journal New Phytologist proposes taking a step 35 million years back to solve the color mystery.

The green of a tree's leaves is from the larger proportion of the chlorophyll pigment in the leaves. The change in color to red or yellow as autumn approaches is not the result of the leaves' dying, but of a series of processes – which differ between the red and yellow autumn leaves. When the green chlorophyll in leaves diminishes, the yellow pigments that already exist become dominant and give their color to the leaves.

Red autumn leaves result from a different process: As the chlorophyll diminishes, a red pigment, anthocyanin, which was not previously present, is produced in the leaf. These facts were only recently discovered and led to a surge of research studies attempting to explain why trees expend resources on creating red pigments just as they are about to shed their leaves.

Explanations that have been offered vary and there is no agreement on this as of yet. One discipline suggests that the red pigment is produced as a result of physiological functions that make the re-translocation of amino acids to the woody parts of the tree more efficient in setting up its protection against the potential damage of light and cold. Other explanations suggest that the red pigment is produced as part of the tree's strategy for protecting itself against insects that thrive on the flow of amino acids. But whatever the answer is, these explanations do not help us understand why the process of creating anthocyanin, the red pigment, does not occur in Europe.

An evolutionary ecology approach infers that the strong autumn colors result from the long evolutionary war between the trees and the insects that use them as hosts. During the fall season, which is when the insects suck the amino acids from the leaves and later lay their eggs, the tree colors its leaves in red because aphids are attracted to yellow ones, so as to advertise to the insects as to the defensive quality of the tree in order to lower the tendency of the insects to occupy the leaves for nutrition and the bark for breeding. In this case too, the protective logic of red pigmentation may be sound, but the yellow leaves cannot be reconciled with this approach. But to settle this point, the new theory can be applied.

According to the theory provided by Prof. Lev-Yadun and Prof. Holopainen, until 35 million years ago, large areas of the globe were covered with evergreen jungles or forests composed of tropical trees. During this phase, a series of ice ages and dry spells transpired and many tree species evolved to become deciduous. Many of these trees also began an evolutionary process of producing red deciduous leaves in order to ward off insects. In North America, as in East Asia, north-to-south mountain chains enabled plant and animal 'migration' to the south or north with the advance and retreat of the ice according to the climatic fluctuations. And, of course, along with them migrated their insect 'enemies' too. Thus the war for survival continued there uninterrupted. In Europe, on the other hand, the mountains – the Alps and their lateral branches – reach from east to west, and therefore no protected areas were created. Many tree species that did not survive the severe cold died, and with them the insects that depended on them for survival. At the end of the repeated ice ages, most tree species that had survived in Europe had no need to cope with many of the insects that had become extinct, and therefore no longer had to expend efforts on producing red warning leaves.

According to the scientists, evidence supporting this theory can be found in the dwarf shrubs that grow in Scandinavia, which still color their leaves red in autumn. Unlike trees, dwarf shrubs have managed to survive the ice ages under a layer of snow that covered them and protected them from the extreme condition above. Under the blanket of snow, the insects that fed off the shrubs were also protected – so the battle with insects continued in these plants, making it necessary for them to color their leaves red.

Amir Gilat | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>