Autopilot Guides Proteins in Brain

“There’s no little man sitting there, putting the protein in the right place,” said Don Arnold, a molecular and computational biologist at USC College.

“Proteins have to have in them encoded information that tells them where to go in the cell.”

In a study appearing online this week in Nature Neuroscience, Arnold and collaborators solve the mystery for key proteins in the brain.

Neurons have separate structures for receiving signals (dendrites) and for sending them (axons). The electrical properties of each depend on different proteins. But the proteins travel in bubbles, or vesicles, powered by motors known as kinesins that travel along tiny molecular paths.

Even though the paths point to both axons and dendrites, dendritic proteins end up in dendrites, and axonal proteins go to the axons. How?

Arnold’s group discovered a crude but effective sorting mechanism. At first, kinesins blindly carry both types of proteins towards the axon.

However, dendritic proteins enable the vesicles transporting them to bind to a second motor, known as myosin, that literally walks them back into the dendrite.

This filter ensures that only axonal proteins make it into the axon. The others are caught by the second motor and diverted to the dendrite.

“This mechanism fishes these things out of the axon,” Arnold said.

Once in the dendrite, the proteins either land in a place where they can do their electrical work or they move back towards the axon, only to be fished out again.

On its face, the process is inefficient, Arnold said, “but it is very effective.”

The discovery may enable finer control over neurons for basic research or for treatment of neurological disorders. Potentially, scientists could target only dendrites or axons in a neuron so as to study its outgoing or incoming impulses.

In addition to these potential applications, the study is notable for its contribution to the understanding of the brain and of protein transport in general.

“It’s a very basic question, something people have been wondering about for a long time,” Arnold said.

The co-authors on the study were first author Tommy Lewis, a graduate student in the molecular and computational biology graduate program at USC, as well as Tianyi Mao and Karel Svoboda from the Howard Hughes Medical Institute at the Janelia Farm Research Campus.

The National Institutes of Health and the Howard Hughes Medical Institute funded the research.

Media Contact

Carl Marziali EurekAlert!

More Information:

http://www.usc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors