Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autophagy helps fast track stem cell activation

14.10.2014

Researchers from Stanford University School of Medicine have discovered a link between a protective mechanism used by cells and the activation of muscle stem cells.

Cells use autophagy to recycle cellular “building blocks” and generate energy during times of nutrient deprivation. The scientists report in The EMBO Journal that when this protective mechanism is operational it also seems to assist in the activation of stem cells.

“Our study reveals that when stem cells emerge from a quiescent state there is a rapid and dramatic change in their metabolic activity,” says Thomas Rando Professor at Stanford University School of Medicine and the lead author of the study.

“The induction of autophagy seems to be a critical component of these metabolic shifts and allows stem cells to cope with the stressful demands for nutrients and the building blocks for the synthesis of large molecules like proteins and DNA that arise due to the rapid growth of the cell.”

Autophagy involves the engulfment of cellular organelles into specialized vacuoles surrounded by a double membrane. The contents of these vacuoles are delivered to the lysosome, another organelle within the cell, where they are degraded to useful small molecules and help to generate energy and biomass for the synthesis of macromolecules and new organelles.

When stem cells are activated, cells experience large changes in their metabolism since they require increased biosynthesis of proteins and other large molecules. The scientists discovered that autophagy is turned on when muscle stem cells are activated. They also showed that when autophagy was inhibited the activation of the stem cells was delayed.

The researchers were also able to demonstrate that a known nutrient sensor, SIRT1, regulates autophagy in the muscle stem cells. When they interfered with this protein using genetic methods or treatment with chemical inhibitors they were able to delay the activation of muscle stem cells.

“This study identifies increased autophagy as a crucial checkpoint in the activation of muscle stem cells,” says Professor Amy Wagers, a Professor the Department of Stem Cell and Regenerative Biology at Harvard University and Harvard Stem Cell Institute who is not an author of the study.

Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation

doi: 10.15252/embj.201488278

Anne H. Tang and Thomas A. Rando

The paper and further information on The EMBO Journal is available at emboj.embopress.org

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

Thomas Schwarz-Romond
Senior Editor, The EMBO Journal
Tel: +49 6221 8891 407
schwarzr@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2014/autophagy-helps-fast-t...

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>