Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Autophagy helps fast track stem cell activation


Researchers from Stanford University School of Medicine have discovered a link between a protective mechanism used by cells and the activation of muscle stem cells.

Cells use autophagy to recycle cellular “building blocks” and generate energy during times of nutrient deprivation. The scientists report in The EMBO Journal that when this protective mechanism is operational it also seems to assist in the activation of stem cells.

“Our study reveals that when stem cells emerge from a quiescent state there is a rapid and dramatic change in their metabolic activity,” says Thomas Rando Professor at Stanford University School of Medicine and the lead author of the study.

“The induction of autophagy seems to be a critical component of these metabolic shifts and allows stem cells to cope with the stressful demands for nutrients and the building blocks for the synthesis of large molecules like proteins and DNA that arise due to the rapid growth of the cell.”

Autophagy involves the engulfment of cellular organelles into specialized vacuoles surrounded by a double membrane. The contents of these vacuoles are delivered to the lysosome, another organelle within the cell, where they are degraded to useful small molecules and help to generate energy and biomass for the synthesis of macromolecules and new organelles.

When stem cells are activated, cells experience large changes in their metabolism since they require increased biosynthesis of proteins and other large molecules. The scientists discovered that autophagy is turned on when muscle stem cells are activated. They also showed that when autophagy was inhibited the activation of the stem cells was delayed.

The researchers were also able to demonstrate that a known nutrient sensor, SIRT1, regulates autophagy in the muscle stem cells. When they interfered with this protein using genetic methods or treatment with chemical inhibitors they were able to delay the activation of muscle stem cells.

“This study identifies increased autophagy as a crucial checkpoint in the activation of muscle stem cells,” says Professor Amy Wagers, a Professor the Department of Stem Cell and Regenerative Biology at Harvard University and Harvard Stem Cell Institute who is not an author of the study.

Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation

doi: 10.15252/embj.201488278

Anne H. Tang and Thomas A. Rando

The paper and further information on The EMBO Journal is available at

Media Contacts

Barry Whyte
Head | Public Relations and Communications

Thomas Schwarz-Romond
Senior Editor, The EMBO Journal
Tel: +49 6221 8891 407

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. For more information:

Weitere Informationen:

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>