Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autophagy helps fast track stem cell activation

14.10.2014

Researchers from Stanford University School of Medicine have discovered a link between a protective mechanism used by cells and the activation of muscle stem cells.

Cells use autophagy to recycle cellular “building blocks” and generate energy during times of nutrient deprivation. The scientists report in The EMBO Journal that when this protective mechanism is operational it also seems to assist in the activation of stem cells.

“Our study reveals that when stem cells emerge from a quiescent state there is a rapid and dramatic change in their metabolic activity,” says Thomas Rando Professor at Stanford University School of Medicine and the lead author of the study.

“The induction of autophagy seems to be a critical component of these metabolic shifts and allows stem cells to cope with the stressful demands for nutrients and the building blocks for the synthesis of large molecules like proteins and DNA that arise due to the rapid growth of the cell.”

Autophagy involves the engulfment of cellular organelles into specialized vacuoles surrounded by a double membrane. The contents of these vacuoles are delivered to the lysosome, another organelle within the cell, where they are degraded to useful small molecules and help to generate energy and biomass for the synthesis of macromolecules and new organelles.

When stem cells are activated, cells experience large changes in their metabolism since they require increased biosynthesis of proteins and other large molecules. The scientists discovered that autophagy is turned on when muscle stem cells are activated. They also showed that when autophagy was inhibited the activation of the stem cells was delayed.

The researchers were also able to demonstrate that a known nutrient sensor, SIRT1, regulates autophagy in the muscle stem cells. When they interfered with this protein using genetic methods or treatment with chemical inhibitors they were able to delay the activation of muscle stem cells.

“This study identifies increased autophagy as a crucial checkpoint in the activation of muscle stem cells,” says Professor Amy Wagers, a Professor the Department of Stem Cell and Regenerative Biology at Harvard University and Harvard Stem Cell Institute who is not an author of the study.

Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation

doi: 10.15252/embj.201488278

Anne H. Tang and Thomas A. Rando

The paper and further information on The EMBO Journal is available at emboj.embopress.org

Media Contacts

Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org

Thomas Schwarz-Romond
Senior Editor, The EMBO Journal
Tel: +49 6221 8891 407
schwarzr@embo.org

About EMBO
EMBO is an organization of more than 1700 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe. For more information: www.embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2014/autophagy-helps-fast-t...

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>