Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic Tracking of Biological Particles in Cell Microscopy Images

25.03.2014

Heidelberg scientists develop powerful automatic method for image analysis

In order to track the movements of biological particles in a cell, scientists at Heidelberg University and the German Cancer Research Center have developed a powerful analysis method for live cell microscopy images.


Tracking result for virus particles

Source: W.J. Godinez, K. Rohr


Tracking result for virus particles – an enlarged section

Source: W.J. Godinez, K. Rohr

This so-called probabilistic particle tracking method is automatic, computer-based and can be used for time-resolved two- and three-dimensional microscopy image data. The Heidelberg method achieved the best overall result in an international competition that compared different methods for image analysis. The competition results were recently published in the journal “Nature Methods”.

The task of how to automatically track the movement of biological particles such as viruses, cell vesicles or cell receptors is of key importance in biomedical applications for the quantitative analysis of intracellular dynamic processes. Manually analysing time-resolved microscopy images with hundreds or thousands of moving objects is not feasible.

In recent years, therefore, there has been increasing emphasis on the development of automatic image analysis methods for particle tracking. These methods are computer-based and determine the positions of particles over time. To objectively compare the performance of these methods, an international competition was organised in 2012 for the first time.

A total of 14 research teams participated in the “Particle Tracking Challenge”, including Dr. William J. Godinez and Associate Professor Dr. Karl Rohr from Heidelberg University and the German Cancer Research Center (DKFZ). In the competition, the different image analysis methods were applied to a broad spectrum of two- and three-dimensional image data and their performance was quantified using different measures. The three best methods were determined for each category of data. With a total of 150 “Top 3 Rankings”, the Heidelberg scientists achieved the best overall result.

The particle tracking method developed by Dr. Godinez and Dr. Rohr is based on a mathematically sound method from probability theory that takes into account uncertainties in the image data, e.g. due to noise, and exploits knowledge of the application domain. “Compared to deterministic methods, our probabilistic approach achieves high accuracy, especially for complicated image data with a large number of objects, high object density and a high level of noise,” says Dr. Rohr. The method enables determining the movement paths of objects and quantifies relevant parameters such as speed, path length, motion type or object size. In addition, important dynamic events such as virus-cell fusions are detected automatically.

Karl Rohr heads the “Biomedical Computer Vision“ (BMCV) research group that develops computer science methods to automatically analyse cell microscopy images as well as radiological images. This group is located at the BioQuant Center of Heidelberg University. It is part of the department “Bioinformatics and Functional Genomics“ at Heidelberg University's Institute of Pharmacy and Molecular Biotechnology as well as the division “Theoretical Bioinformatics“ of the DKFZ, both of which are headed by Prof. Dr. Roland Eils. William J. Godinez is pursuing postdoctoral work in the BMCV group on the development of computer-based particle tracking methods.

Internet information:
http://www.bioquant.uni-heidelberg.de/bmcv

Publication in Nature Methods:
N. Chenouard, I. Smal, F. de Chaumont, M. Maška, I.F. Sbalzarini, Y. Gong, J. Cardinale, C. Carthel, S. Coraluppi, M. Winter, A.R. Cohen, W.J. Godinez, K. Rohr, Y. Kalaidzidis, L. Liang, J. Duncan, H. Shen, Y. Xu, K.E.G. Magnusson, J. Jaldén, H.M. Blau, P. Paul-Gilloteaux, P. Roudot, C. Kervrann, F. Waharte, J.Y. Tinevez, S.L. Shorte, J. Willemse, K. Celler, G.P. van Wezel, H.W. Dan, Y.S. Tsai, C. Ortiz de Solórzano, J.C. Olivo-Marin, E. Meijering: Objective comparison of particle tracking methods. Nature Methods (March 2014), Volume 11, Issue 3, 281-289, doi: 10.1038/nmeth.2808

Captions:
Particle_Tracking_1.jpg und Particle_Tracking_2.jpg
Tracking result for virus particles. Microscopy image of time-resolved data overlaid with automatically determined movement paths of HIV-1 particles, shown in different colours. The small boxes indicate the positions found at the current time point. Image two shows an enlarged section of the area marked by the white rectangle in image one.
Source: W.J. Godinez, K. Rohr

Contact:
Associate Professor Dr. Karl Rohr
“Biomedical Computer Vision” research group
Phone: +49 6221 51-298
k.rohr@uni-hd.de, k.rohr@dkfz.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Automatic Cancer Cell Microscopy Tracking methods movement particles three-dimensional

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>