Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated counting of tumor cells in blood

04.05.2015

Biological and medical scientists have been using flow cytometry to count cancer cells for the past 40 years. But the large instruments are expensive and can only be operated by trained personnel. By contrast the PoCyton cytometer developed by Fraunhofer researchers is cheap to produce, no bigger than a shoebox, and automated.

Both chemotherapy and radiotherapy place a high burden on the patient’s body. Their discomfort could be reduced if it was possible to reliably ascertain the results of this treatment, but until now the only way to do this was by computerized tomography (CT) scans.


The measuring channel that forms the key component of the cytometer is visible on the right-hand side of the image.

© Fraunhofer ICT-IMM

A quicker and simpler analysis technique may soon be available, within a couple of years. All the PoCyton flow cytometer needs is a sample of the patient’s blood, and within a short time the attending physician will know how many tumor cells are circulating in the blood.

Cancerous growths release cells into the bloodstream, and their number provides an indication of how effective the therapy has been: If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Smaller, faster and easier to operate

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream but they often cost up to 300,000 euros and take up a huge amount of space – equivalent to two washing machines. Moreover, each test cycle lasts several hours. All in all, such techniques are too expensive and time-consuming for everyday clinical practice.

A further downside of these cytometers is that they can only be operated by trained specialists and require daily recalibration. An alternative is the PoCyton device developed by researchers at the micro-engineering branch of the Fraunhofer Institute for Chemical Technology in Mainz (IMM). As Dr. Michael Baßler, research scientist at ICT-IMM, explains:

“Our flow cytometer enables such tests to be carried out around twenty times faster. Their cost is also lower by several magnitudes, which takes us into a new dimension that makes these devices much more affordable for clinical applications.” Another advantage of the new flow cytometer is the use of miniaturized components that have reduced its size to that of a shoebox. Measurements are carried out automatically, and no calibration is necessary.

Flow cytometry works on the following principle: A fluorescent dye is injected into the blood, and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Whereas until now the physician had to add the dye to the blood sample manually, this now takes place automatically in the PoCyton process.

The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cells to which the dye has attached itself – the tumor cells – to fluoresce, enabling the device to detect and count them.

This narrow passage is the key to the PoCyton process. “We designed it in such a way that the throughput is 20 times greater than in conventional cytometry,” says Baßler. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way the scientists can be sure that the system registers every single object flowing past the detector – and that no cell is hidden behind another.

Such errors could have dramatic consequences, because a mere ten-milliliter sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells, even in a severely sick patient. The researchers have mastered the individual steps such as adequate sensitivity, automatic sample preparation, and analysis. They are now combining these separate process steps to create a fully function demonstrator which they expect to complete by the summer of 2015.

Legionella risk assessment by testing water quality in situ

Potential applications of PoCyton go beyond the counting of tumor cells. For example, in collaboration with Swiss company rqmicro the researchers intend to use the device to detect legionella bacteria in drinking water. These members of the staphylococcus family can cause the sometimes deadly lung infection known as Legionnaires’ disease.

Until now, the only way of testing domestic drinking water involved sending a water sample to a laboratory and waiting about ten days for the results. For this is the time needed to multiply the water-borne bacteria in a Petri dish so that their concentration can be measured. “Our flow cytometer can perform the same analysis within an hour,” says Baßler.

A plumber can use the portable device to test the water in situ. All he has to do is place a water sample in the device and start the process. According to rqmicro, a commercial version of the product should be available within about two years.

Dr. rer. nat. Stefan Kiesewalter | Fraunhofer Forschung Kompakt
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/may/automated-counting-of-tumor-cells-in-blood.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>