Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated counting of tumor cells in blood

04.05.2015

Biological and medical scientists have been using flow cytometry to count cancer cells for the past 40 years. But the large instruments are expensive and can only be operated by trained personnel. By contrast the PoCyton cytometer developed by Fraunhofer researchers is cheap to produce, no bigger than a shoebox, and automated.

Both chemotherapy and radiotherapy place a high burden on the patient’s body. Their discomfort could be reduced if it was possible to reliably ascertain the results of this treatment, but until now the only way to do this was by computerized tomography (CT) scans.


The measuring channel that forms the key component of the cytometer is visible on the right-hand side of the image.

© Fraunhofer ICT-IMM

A quicker and simpler analysis technique may soon be available, within a couple of years. All the PoCyton flow cytometer needs is a sample of the patient’s blood, and within a short time the attending physician will know how many tumor cells are circulating in the blood.

Cancerous growths release cells into the bloodstream, and their number provides an indication of how effective the therapy has been: If the number of cancerous cells decreases in the course of treatment, it shows that it has been effective.

Smaller, faster and easier to operate

Existing flow cytometers are capable of measuring the quantity of tumor cells circulating in the bloodstream but they often cost up to 300,000 euros and take up a huge amount of space – equivalent to two washing machines. Moreover, each test cycle lasts several hours. All in all, such techniques are too expensive and time-consuming for everyday clinical practice.

A further downside of these cytometers is that they can only be operated by trained specialists and require daily recalibration. An alternative is the PoCyton device developed by researchers at the micro-engineering branch of the Fraunhofer Institute for Chemical Technology in Mainz (IMM). As Dr. Michael Baßler, research scientist at ICT-IMM, explains:

“Our flow cytometer enables such tests to be carried out around twenty times faster. Their cost is also lower by several magnitudes, which takes us into a new dimension that makes these devices much more affordable for clinical applications.” Another advantage of the new flow cytometer is the use of miniaturized components that have reduced its size to that of a shoebox. Measurements are carried out automatically, and no calibration is necessary.

Flow cytometry works on the following principle: A fluorescent dye is injected into the blood, and the dye molecules bind to the tumor cells, leaving all other cells unmarked. Whereas until now the physician had to add the dye to the blood sample manually, this now takes place automatically in the PoCyton process.

The blood is funneled through a narrow focal area, causing all suspended cells to pass one by one in front of a laser spot detector. The light causes the cells to which the dye has attached itself – the tumor cells – to fluoresce, enabling the device to detect and count them.

This narrow passage is the key to the PoCyton process. “We designed it in such a way that the throughput is 20 times greater than in conventional cytometry,” says Baßler. At the same time, its geometry was chosen to ensure that no cells pass in front of one another. In this way the scientists can be sure that the system registers every single object flowing past the detector – and that no cell is hidden behind another.

Such errors could have dramatic consequences, because a mere ten-milliliter sample of blood contains around one billion suspended objects. Of these, only five are circulating tumor cells, even in a severely sick patient. The researchers have mastered the individual steps such as adequate sensitivity, automatic sample preparation, and analysis. They are now combining these separate process steps to create a fully function demonstrator which they expect to complete by the summer of 2015.

Legionella risk assessment by testing water quality in situ

Potential applications of PoCyton go beyond the counting of tumor cells. For example, in collaboration with Swiss company rqmicro the researchers intend to use the device to detect legionella bacteria in drinking water. These members of the staphylococcus family can cause the sometimes deadly lung infection known as Legionnaires’ disease.

Until now, the only way of testing domestic drinking water involved sending a water sample to a laboratory and waiting about ten days for the results. For this is the time needed to multiply the water-borne bacteria in a Petri dish so that their concentration can be measured. “Our flow cytometer can perform the same analysis within an hour,” says Baßler.

A plumber can use the portable device to test the water in situ. All he has to do is place a water sample in the device and start the process. According to rqmicro, a commercial version of the product should be available within about two years.

Dr. rer. nat. Stefan Kiesewalter | Fraunhofer Forschung Kompakt
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/may/automated-counting-of-tumor-cells-in-blood.html

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>