Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autologous bone marrow-derived mononuclear cell transplants can reduce diabetic amputations

19.04.2012
Autologous (self-donated) mononuclear cells derived from bone marrow (BMMNCs) have been found to significantly induce vascular growth when transplanted into patients with diabetes who are suffering from critical limb ischemia caused by peripheral artery disease (PAD), a complication of diabetes.

The team of researchers in Seville, Spain who carried out the study published their results in a recent issue of Cell Transplantation (20:10), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality; however, neovascularization induced by stem cell therapy could be a useful approach for these patients," said study corresponding author Dr. Bernat Soria of the Andaluz Center for Biologic and Molecular Regenerative Medicine in Seville, Spain. "In this study we evaluated the safety and efficacy of inter-arterial administration of autologous bone marrow-derived mononuclear cells with 20 diabetic patents with severe below-the-knee arterial ischemia."

The researchers noted that surgical or endovascular revascularization options for patients such as those in the study are limited because of poor arterial outflow. Although optimum dose, source and route of administration were outstanding questions, proper BMMNC dose for best results was an issue that the researchers hoped to clarify. They subsequently used a dose ten times smaller than other researchers had used previously in similar studies.

According to the authors, the rationale for their study was that intra-arterial infusions of autologous BMMNCs contain endothelial progenitors that are locally profuse at severely diseased vascular beds in the lower limb. Their hope was that the BMMNCs could promote early and effective development of new vascularization.

Patients were evaluated at three months and twelve months post-transplantation.

"As previously reported, the one-year mortality rate for diabetic patients with PAD - most of which are associated with cardiac complications - has been found to be 20 percent," explained Dr. Soria. "Our study documented significant increases in neovasculogenesis for the majority of our study patients and a decrease in the number of amputations. However, overall PAD mortality for our patients was similar to that generally experienced."
The researchers concluded that BMMNC therapy for lower limb ischemia was a "safe procedure that generates a significant increase in the vascular network in ischemic areas" and promotes "remarkable clinical improvement."

"While this study did not demonstrate a significant effect on mortality, it does suggest an improvement in the quality of life based on limb retention as shown by the significant reduction in the number of amputations", said Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

Contact: Dr. Bernat Soria, Centro Anduluz de Biologica Molecular Medicine Regenerative, Americo Vespucio s/n, 41092 Sevilla, Spain.
Tel. (+34) 954468004
Fax. (+34) 954461664
Email bernat.soria@cabimer.es
Citation: Ruiz-Salmeron, R.; de la Cuesta-Diaz, A.; Constantino-Bermejo, M.; Pérez-Camacho, I.; Marcos-Sánchez, F.; Hmadcha, A.; Soria, B. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia.Cell Transplant. 20(10):1629-1639; 2011.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Florida Science Communications www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>