Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autologous bone marrow-derived mononuclear cell transplants can reduce diabetic amputations

19.04.2012
Autologous (self-donated) mononuclear cells derived from bone marrow (BMMNCs) have been found to significantly induce vascular growth when transplanted into patients with diabetes who are suffering from critical limb ischemia caused by peripheral artery disease (PAD), a complication of diabetes.

The team of researchers in Seville, Spain who carried out the study published their results in a recent issue of Cell Transplantation (20:10), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Critical limb ischemia in diabetic patients is associated with high rates of morbidity and mortality; however, neovascularization induced by stem cell therapy could be a useful approach for these patients," said study corresponding author Dr. Bernat Soria of the Andaluz Center for Biologic and Molecular Regenerative Medicine in Seville, Spain. "In this study we evaluated the safety and efficacy of inter-arterial administration of autologous bone marrow-derived mononuclear cells with 20 diabetic patents with severe below-the-knee arterial ischemia."

The researchers noted that surgical or endovascular revascularization options for patients such as those in the study are limited because of poor arterial outflow. Although optimum dose, source and route of administration were outstanding questions, proper BMMNC dose for best results was an issue that the researchers hoped to clarify. They subsequently used a dose ten times smaller than other researchers had used previously in similar studies.

According to the authors, the rationale for their study was that intra-arterial infusions of autologous BMMNCs contain endothelial progenitors that are locally profuse at severely diseased vascular beds in the lower limb. Their hope was that the BMMNCs could promote early and effective development of new vascularization.

Patients were evaluated at three months and twelve months post-transplantation.

"As previously reported, the one-year mortality rate for diabetic patients with PAD - most of which are associated with cardiac complications - has been found to be 20 percent," explained Dr. Soria. "Our study documented significant increases in neovasculogenesis for the majority of our study patients and a decrease in the number of amputations. However, overall PAD mortality for our patients was similar to that generally experienced."
The researchers concluded that BMMNC therapy for lower limb ischemia was a "safe procedure that generates a significant increase in the vascular network in ischemic areas" and promotes "remarkable clinical improvement."

"While this study did not demonstrate a significant effect on mortality, it does suggest an improvement in the quality of life based on limb retention as shown by the significant reduction in the number of amputations", said Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

Contact: Dr. Bernat Soria, Centro Anduluz de Biologica Molecular Medicine Regenerative, Americo Vespucio s/n, 41092 Sevilla, Spain.
Tel. (+34) 954468004
Fax. (+34) 954461664
Email bernat.soria@cabimer.es
Citation: Ruiz-Salmeron, R.; de la Cuesta-Diaz, A.; Constantino-Bermejo, M.; Pérez-Camacho, I.; Marcos-Sánchez, F.; Hmadcha, A.; Soria, B. Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia.Cell Transplant. 20(10):1629-1639; 2011.

The editorial offices for Cell Transplantation are at the Center of Excellence for Aging and Brain Repair, College of Medicine, the University of South Florida and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, David Eve, PhD. at celltransplantation@gmail.com or Camillo Ricordi, MD at ricordi@miami.edu

News release by Florida Science Communications www.sciencescribe.net

David Eve | EurekAlert!
Further information:
http://www.ingentaconnect.com/content/cog/ct/

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>