Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian team reveals world-first discovery in a 'floppy baby' syndrome

27.05.2009
In a world first, West Australian scientists have cured mice of a devastating muscle disease that causes a Floppy Baby Syndrome – a breakthrough that could ultimately help thousands of families across the globe.

The research, published online today in the Journal of Cell Biology, reveals how a team at the Western Australian Institute for Medical Research (WAIMR) has restored muscle function in mice with one type of Floppy Baby Syndrome – a congenital myopathy disorder that causes babies to be born without the ability to properly use their muscles.

The currently incurable genetic diseases render most of the affected children severely paralysed and take the lives of the majority of these children before the age of one.

Dr Kristen Nowak, lead author on the publication, said the team was extremely encouraged that it had been able to cure a group of mice born with the condition.

"The mice with Floppy Baby Syndrome were only expected to live for about nine days, but we managed to cure them so they were born with normal muscle function, allowing them to live naturally and very actively into old age," she said.

"This is an important step towards one day hopefully being able to better the lives of human patients – mice who were cured of the disease lived more than two years, which is very old age for a mouse."

Dr Nowak said the team was able to cure the mice with the recessive form of the genetic condition by replacing missing skeletal muscle actin – a protein integral in allowing muscles to contract – with similar actin found in the heart.

"Earlier in our search to tackle these diseases, we discovered a number of children who, despite having no skeletal muscle actin in their skeletal muscle due to their genetic mutation, were not totally paralysed at birth," she said.

"On closer inspection, we found it was because heart actin – another form of the protein – was abnormally "switched on" in their skeletal muscles.

"We had already begun investigating whether we could use heart actin to treat skeletal muscle actin disease, so that discovery spurred us on, and we've now proved it can be done – we can use heart actin to overcome the absence of skeletal muscle actin in mice."

Heart actin is found in cardiac muscle and, during foetal development, it also works in skeletal muscles in the body, but by birth, heart actin has almost completely disappeared within skeletal muscle.

Using genetic techniques, the WAIMR research team has reactivated the heart actin after birth in place of skeletal muscle actin, reversing the effects of the congenital myopathy.

Head of the WAIMR research group Professor Nigel Laing said the team's next step was to apply their findings to human patients.

"We are now screening more than a thousand already-approved medications looking for one that might increase heart actin in skeletal muscles, which could potentially offer a treatment for many patients," he said.

"Current therapies only target the effects of these conditions, not the condition itself – we hope our approach could lead to a much greater improvement for a range of muscle diseases."

This discovery is the latest for the team which has been investigating debilitating muscle diseases for more than 20 years.

The first major breakthrough for actin disease was in 1999, when the team identified that defects in the skeletal muscle actin gene, ACTA1 – responsible for producing skeletal muscle actin, cause multiple muscle diseases.

Since then, the team has classified and named a new muscle disease 'Laing Myopathy' – named after Professor Nigel Laing – and helped implement world-wide screening for families at risk of genetic muscle disease.

WAIMR Director Professor Peter Klinken said he was thrilled WAIMR was playing such an integral part in helping tackle devastating muscle diseases.

"The persistence and determination shown by Professor Laing and his team over many, many years is nothing short of inspiring," he said.

"They've asked some big questions in their quest to find a cure for this Floppy Baby Syndrome and have worked tirelessly to find the answers to those questions in the hope of helping families across the world.

"Research institutes like ours exist to help people live healthier lives and I am delighted at the important discoveries we are making in this field."

This research has been funded by the National Health and Medical Research Council, WAIMR and a number of patient support groups including the Association Française contre les Myopathies (French Muscular Dystrophy Association) and the US Muscular Dystrophy Association.

The research project centred at the WAIMR laboratory was a collaborative effort with groups at the Medical Research Council and the University of Oxford in the United Kingdom, Cincinnati Children's Hospital Medical Center as well as the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia and Perth-based Proteomics International which have also assisted the team's work.

Floppy Baby Syndrome

The skeletal muscle actin mutations which cause congenital myopathies can be classified into five individual diseases which affect thousands of families worldwide. Children with recessive muscle actin diseases have no skeletal muscle actin because of mutations in the skeletal muscle actin gene which "knock out" the gene function. In Australia, dozens of families are affected by congenital myopathies which bring high emotional costs and personal suffering, as well as financial and community burdens.

MEDIA CONTACTS
Australia: Natalie Papadopoulos, m: 0407 984 435 e: natalie@capturemedia.com.au
Sarah Hayward, m: 0411 404 415 e: sarah@capturemedia.com.au
UK: Professor Dame Kay Davies, University of Oxford, ph: 01865 285880/272430 M: 0797 097 4911 e: kay.davies@dpag.ox.ac.uk

Natalie Papadopoulos | EurekAlert!
Further information:
http://www.researchaustralia.org

More articles from Life Sciences:

nachricht Shrews shrink in winter and regrow in spring
24.10.2017 | Max-Planck-Institut für Ornithologie

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>