Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian team reveals world-first discovery in a 'floppy baby' syndrome

27.05.2009
In a world first, West Australian scientists have cured mice of a devastating muscle disease that causes a Floppy Baby Syndrome – a breakthrough that could ultimately help thousands of families across the globe.

The research, published online today in the Journal of Cell Biology, reveals how a team at the Western Australian Institute for Medical Research (WAIMR) has restored muscle function in mice with one type of Floppy Baby Syndrome – a congenital myopathy disorder that causes babies to be born without the ability to properly use their muscles.

The currently incurable genetic diseases render most of the affected children severely paralysed and take the lives of the majority of these children before the age of one.

Dr Kristen Nowak, lead author on the publication, said the team was extremely encouraged that it had been able to cure a group of mice born with the condition.

"The mice with Floppy Baby Syndrome were only expected to live for about nine days, but we managed to cure them so they were born with normal muscle function, allowing them to live naturally and very actively into old age," she said.

"This is an important step towards one day hopefully being able to better the lives of human patients – mice who were cured of the disease lived more than two years, which is very old age for a mouse."

Dr Nowak said the team was able to cure the mice with the recessive form of the genetic condition by replacing missing skeletal muscle actin – a protein integral in allowing muscles to contract – with similar actin found in the heart.

"Earlier in our search to tackle these diseases, we discovered a number of children who, despite having no skeletal muscle actin in their skeletal muscle due to their genetic mutation, were not totally paralysed at birth," she said.

"On closer inspection, we found it was because heart actin – another form of the protein – was abnormally "switched on" in their skeletal muscles.

"We had already begun investigating whether we could use heart actin to treat skeletal muscle actin disease, so that discovery spurred us on, and we've now proved it can be done – we can use heart actin to overcome the absence of skeletal muscle actin in mice."

Heart actin is found in cardiac muscle and, during foetal development, it also works in skeletal muscles in the body, but by birth, heart actin has almost completely disappeared within skeletal muscle.

Using genetic techniques, the WAIMR research team has reactivated the heart actin after birth in place of skeletal muscle actin, reversing the effects of the congenital myopathy.

Head of the WAIMR research group Professor Nigel Laing said the team's next step was to apply their findings to human patients.

"We are now screening more than a thousand already-approved medications looking for one that might increase heart actin in skeletal muscles, which could potentially offer a treatment for many patients," he said.

"Current therapies only target the effects of these conditions, not the condition itself – we hope our approach could lead to a much greater improvement for a range of muscle diseases."

This discovery is the latest for the team which has been investigating debilitating muscle diseases for more than 20 years.

The first major breakthrough for actin disease was in 1999, when the team identified that defects in the skeletal muscle actin gene, ACTA1 – responsible for producing skeletal muscle actin, cause multiple muscle diseases.

Since then, the team has classified and named a new muscle disease 'Laing Myopathy' – named after Professor Nigel Laing – and helped implement world-wide screening for families at risk of genetic muscle disease.

WAIMR Director Professor Peter Klinken said he was thrilled WAIMR was playing such an integral part in helping tackle devastating muscle diseases.

"The persistence and determination shown by Professor Laing and his team over many, many years is nothing short of inspiring," he said.

"They've asked some big questions in their quest to find a cure for this Floppy Baby Syndrome and have worked tirelessly to find the answers to those questions in the hope of helping families across the world.

"Research institutes like ours exist to help people live healthier lives and I am delighted at the important discoveries we are making in this field."

This research has been funded by the National Health and Medical Research Council, WAIMR and a number of patient support groups including the Association Française contre les Myopathies (French Muscular Dystrophy Association) and the US Muscular Dystrophy Association.

The research project centred at the WAIMR laboratory was a collaborative effort with groups at the Medical Research Council and the University of Oxford in the United Kingdom, Cincinnati Children's Hospital Medical Center as well as the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia and Perth-based Proteomics International which have also assisted the team's work.

Floppy Baby Syndrome

The skeletal muscle actin mutations which cause congenital myopathies can be classified into five individual diseases which affect thousands of families worldwide. Children with recessive muscle actin diseases have no skeletal muscle actin because of mutations in the skeletal muscle actin gene which "knock out" the gene function. In Australia, dozens of families are affected by congenital myopathies which bring high emotional costs and personal suffering, as well as financial and community burdens.

MEDIA CONTACTS
Australia: Natalie Papadopoulos, m: 0407 984 435 e: natalie@capturemedia.com.au
Sarah Hayward, m: 0411 404 415 e: sarah@capturemedia.com.au
UK: Professor Dame Kay Davies, University of Oxford, ph: 01865 285880/272430 M: 0797 097 4911 e: kay.davies@dpag.ox.ac.uk

Natalie Papadopoulos | EurekAlert!
Further information:
http://www.researchaustralia.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>