Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian team reveals world-first discovery in a 'floppy baby' syndrome

27.05.2009
In a world first, West Australian scientists have cured mice of a devastating muscle disease that causes a Floppy Baby Syndrome – a breakthrough that could ultimately help thousands of families across the globe.

The research, published online today in the Journal of Cell Biology, reveals how a team at the Western Australian Institute for Medical Research (WAIMR) has restored muscle function in mice with one type of Floppy Baby Syndrome – a congenital myopathy disorder that causes babies to be born without the ability to properly use their muscles.

The currently incurable genetic diseases render most of the affected children severely paralysed and take the lives of the majority of these children before the age of one.

Dr Kristen Nowak, lead author on the publication, said the team was extremely encouraged that it had been able to cure a group of mice born with the condition.

"The mice with Floppy Baby Syndrome were only expected to live for about nine days, but we managed to cure them so they were born with normal muscle function, allowing them to live naturally and very actively into old age," she said.

"This is an important step towards one day hopefully being able to better the lives of human patients – mice who were cured of the disease lived more than two years, which is very old age for a mouse."

Dr Nowak said the team was able to cure the mice with the recessive form of the genetic condition by replacing missing skeletal muscle actin – a protein integral in allowing muscles to contract – with similar actin found in the heart.

"Earlier in our search to tackle these diseases, we discovered a number of children who, despite having no skeletal muscle actin in their skeletal muscle due to their genetic mutation, were not totally paralysed at birth," she said.

"On closer inspection, we found it was because heart actin – another form of the protein – was abnormally "switched on" in their skeletal muscles.

"We had already begun investigating whether we could use heart actin to treat skeletal muscle actin disease, so that discovery spurred us on, and we've now proved it can be done – we can use heart actin to overcome the absence of skeletal muscle actin in mice."

Heart actin is found in cardiac muscle and, during foetal development, it also works in skeletal muscles in the body, but by birth, heart actin has almost completely disappeared within skeletal muscle.

Using genetic techniques, the WAIMR research team has reactivated the heart actin after birth in place of skeletal muscle actin, reversing the effects of the congenital myopathy.

Head of the WAIMR research group Professor Nigel Laing said the team's next step was to apply their findings to human patients.

"We are now screening more than a thousand already-approved medications looking for one that might increase heart actin in skeletal muscles, which could potentially offer a treatment for many patients," he said.

"Current therapies only target the effects of these conditions, not the condition itself – we hope our approach could lead to a much greater improvement for a range of muscle diseases."

This discovery is the latest for the team which has been investigating debilitating muscle diseases for more than 20 years.

The first major breakthrough for actin disease was in 1999, when the team identified that defects in the skeletal muscle actin gene, ACTA1 – responsible for producing skeletal muscle actin, cause multiple muscle diseases.

Since then, the team has classified and named a new muscle disease 'Laing Myopathy' – named after Professor Nigel Laing – and helped implement world-wide screening for families at risk of genetic muscle disease.

WAIMR Director Professor Peter Klinken said he was thrilled WAIMR was playing such an integral part in helping tackle devastating muscle diseases.

"The persistence and determination shown by Professor Laing and his team over many, many years is nothing short of inspiring," he said.

"They've asked some big questions in their quest to find a cure for this Floppy Baby Syndrome and have worked tirelessly to find the answers to those questions in the hope of helping families across the world.

"Research institutes like ours exist to help people live healthier lives and I am delighted at the important discoveries we are making in this field."

This research has been funded by the National Health and Medical Research Council, WAIMR and a number of patient support groups including the Association Française contre les Myopathies (French Muscular Dystrophy Association) and the US Muscular Dystrophy Association.

The research project centred at the WAIMR laboratory was a collaborative effort with groups at the Medical Research Council and the University of Oxford in the United Kingdom, Cincinnati Children's Hospital Medical Center as well as the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia and Perth-based Proteomics International which have also assisted the team's work.

Floppy Baby Syndrome

The skeletal muscle actin mutations which cause congenital myopathies can be classified into five individual diseases which affect thousands of families worldwide. Children with recessive muscle actin diseases have no skeletal muscle actin because of mutations in the skeletal muscle actin gene which "knock out" the gene function. In Australia, dozens of families are affected by congenital myopathies which bring high emotional costs and personal suffering, as well as financial and community burdens.

MEDIA CONTACTS
Australia: Natalie Papadopoulos, m: 0407 984 435 e: natalie@capturemedia.com.au
Sarah Hayward, m: 0411 404 415 e: sarah@capturemedia.com.au
UK: Professor Dame Kay Davies, University of Oxford, ph: 01865 285880/272430 M: 0797 097 4911 e: kay.davies@dpag.ox.ac.uk

Natalie Papadopoulos | EurekAlert!
Further information:
http://www.researchaustralia.org

More articles from Life Sciences:

nachricht ADP-ribosylation on the right track
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Why we need erasable MRI scans

26.04.2018 | Medical Engineering

Balancing nuclear and renewable energy

26.04.2018 | Power and Electrical Engineering

Researchers 3-D print electronics and cells directly on skin

26.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>