Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aurora B answers an XIST-ential question

25.08.2009
Mitotic release of chromatin-binding RNA gives insight into X chromosome silencing

Early in development, mammalian female cells counteract their double dose of X chromosomes by coating one of them with a large RNA named XIST. The RNA binds to the same X chromosome from which it is transcribed and initiates a series of events leading to the chromosome's permanent silencing.

In the August 24, 2009 issue of the Journal of Cell Biology (www.jcb.org), Hall et al. exploit the fact that XIST temporarily dissociates from the X chromosome during mitosis and find that Aurora B kinase helps regulate the RNA's chromatin binding.

Although more than 10 years have passed since XIST was shown to paint the inactivated X (Xi) chromosome, little is known of how the 14-kb, noncoding transcript binds its target. "We know it doesn't just bind the DNA, but no specific binding proteins have been identified," says lead author Lisa Hall.

Biochemical approaches to finding protein partners may have been hampered by XIST's large size and tight association with the X chromosome, making it hard to extract the RNA complex and study it in vitro. So Hall, together with colleagues in Jeanne Lawrence's laboratory at the University of Massachusetts Medical School, took an in vivo approach—mimicking the events that cause XIST to drop off the Xi in early prophase.

Hall and colleagues found that treating cells with an inhibitor of protein phosphatase 1 (PP1) caused XIST to be released from the Xi in interphase cells. PP1 usually keeps the kinase Aurora B in check until the start of mitosis, so the team wondered whether XIST's premature release was driven by increased Aurora B activity. XIST was no longer released in interphase cells if PP1 and Aurora B were both inhibited. Moreover, inhibiting Aurora B with either drugs or a specific siRNA caused XIST to be retained on the Xi even in mitotic cells.

Lawrence says that the team was excited to identify Aurora B as a regulator of XIST. Their previous studies had suggested that a broader chromatin organizer might control XIST binding, particularly during cancer when the regulation of XIST and the Xi often goes awry. Aurora B fits the bill perfectly as it localizes to the chromosome arms at prophase, phosphorylates several chromatin proteins including histone H3, and is frequently activated in cancer cells.

It remains unclear exactly how Aurora B promotes XIST's loss from the Xi. "There are probably multiple places that XIST anchors to chromatin," says Lawrence. "In order to release it, you have to modify multiple points." Further studies on the mitotic loss of XIST should help identify these different anchor points and determine how they are modified to promote or block RNA binding.

XIST may, in fact, represent a broader class of noncoding RNAs that associate with and regulate heterochromatin. "We hope that manipulating binding in vivo provides a new way to study RNA–chromatin interactions that other labs will build on," says Lawrence. "It will be interesting to determine if these other RNAs mirror the behavior of XIST and are controlled by the same mechanism."

About the Journal of Cell Biology

Founded in 1955, the Journal of Cell Biology (JCB) is published by the Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license.

Hall, L.L., et al. 2009. J. Cell Biol. doi:10.1083/jcb.200811143

Rita Sullivan | EurekAlert!
Further information:
http://www.jcb.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>