Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Attractive and successful - In bonobos, attractive females are more likely to win conflicts against males

Female social dominance over males is rare among mammal species. Bonobos, one of our closest living relatives, are known for females holding relatively high social statuses when compared to males; though this is puzzling as the males are often bigger and stronger than the females.

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have now analyzed the dominance relations between male and female wild bonobos and took particular interest in the high social status ranking of some females.

Bonobo man Jack grooms female Susi in Salonga National Park in the Democratic Republic of the Congo. © Caroline Deimel, LuiKotale Bonobo Project

The result: It is not female alliances that help females win conflicts. The context of the conflict does not seem to be relevant for its outcome either. Instead, the attractiveness of females plays an important role. If females display sexually attractive attributes, including sexual swellings, they win conflicts with males more easily, with the males behaving in a less aggressive way.

While intersexual dominance relations in bonobos never have been thoroughly studied in the wild, several ideas exist of how females attain their dominance status. Some researchers suggest that bonobo female dominance is facilitated by females forming coalitions which suppress male aggression. Others think of an evolutionary scenario in which females prefer non-aggressive males which renders male aggressiveness to a non-adaptive trait.

A recent study by researchers of the LuiKotale bonobo project from the Max Planck Institute for Evolutionary Anthropology reports on the outcomes of intersexual conflicts in a bonobo community near the Salonga National Park in the Democratic Republic of the Congo. Based on the analysis of outcomes of conflicts between the sexes, they found a sex-independent dominance hierarchy with several females occupying top ranks.

Furthermore they discovered that only two factors have a significant influence on the outcome of intersexual conflicts: female motivation to help offspring and attractiveness. That is, whenever females defend their offspring against male aggression, often alone but sometimes in groups, males defer to females. But even more interestingly, females are more likely to win conflicts against males during times when they exhibit sexual swellings indicating elevated fecundity.

Martin Surbeck, first author of the publication, says: “In those situations, males also aggress females less often, which is different from chimpanzees, our other closest living relatives.” The results indicate that in bonobos both female sexuality and male mating strategies are involved in the shifting dominance relationships between the sexes.


Dr. Martin Surbeck
Dept. of Primatology
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-202
Email: surbeck@­
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­
Original publication
Martin Surbeck, Gottfried Hohmann
Intersexual dominance relationships and the influence of leverage on the outcome of conflicts in wild bonobos (Pan paniscus)

Behavioral Ecology and Sociobiology, 9 July 2013, DOI: 10.1007/s00265-013-1584-8

Dr. Martin Surbeck | Max-Planck-Institute
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>