Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attractive and successful - In bonobos, attractive females are more likely to win conflicts against males

16.07.2013
Female social dominance over males is rare among mammal species. Bonobos, one of our closest living relatives, are known for females holding relatively high social statuses when compared to males; though this is puzzling as the males are often bigger and stronger than the females.

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have now analyzed the dominance relations between male and female wild bonobos and took particular interest in the high social status ranking of some females.


Bonobo man Jack grooms female Susi in Salonga National Park in the Democratic Republic of the Congo. © Caroline Deimel, LuiKotale Bonobo Project

The result: It is not female alliances that help females win conflicts. The context of the conflict does not seem to be relevant for its outcome either. Instead, the attractiveness of females plays an important role. If females display sexually attractive attributes, including sexual swellings, they win conflicts with males more easily, with the males behaving in a less aggressive way.

While intersexual dominance relations in bonobos never have been thoroughly studied in the wild, several ideas exist of how females attain their dominance status. Some researchers suggest that bonobo female dominance is facilitated by females forming coalitions which suppress male aggression. Others think of an evolutionary scenario in which females prefer non-aggressive males which renders male aggressiveness to a non-adaptive trait.

A recent study by researchers of the LuiKotale bonobo project from the Max Planck Institute for Evolutionary Anthropology reports on the outcomes of intersexual conflicts in a bonobo community near the Salonga National Park in the Democratic Republic of the Congo. Based on the analysis of outcomes of conflicts between the sexes, they found a sex-independent dominance hierarchy with several females occupying top ranks.

Furthermore they discovered that only two factors have a significant influence on the outcome of intersexual conflicts: female motivation to help offspring and attractiveness. That is, whenever females defend their offspring against male aggression, often alone but sometimes in groups, males defer to females. But even more interestingly, females are more likely to win conflicts against males during times when they exhibit sexual swellings indicating elevated fecundity.

Martin Surbeck, first author of the publication, says: “In those situations, males also aggress females less often, which is different from chimpanzees, our other closest living relatives.” The results indicate that in bonobos both female sexuality and male mating strategies are involved in the shifting dominance relationships between the sexes.

Contact

Dr. Martin Surbeck
Dept. of Primatology
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-202
Email: surbeck@­eva.mpg.de
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­eva.mpg.de
Original publication
Martin Surbeck, Gottfried Hohmann
Intersexual dominance relationships and the influence of leverage on the outcome of conflicts in wild bonobos (Pan paniscus)

Behavioral Ecology and Sociobiology, 9 July 2013, DOI: 10.1007/s00265-013-1584-8

Dr. Martin Surbeck | Max-Planck-Institute
Further information:
http://­www.eva.mpg.de

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>