Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attractive and successful - In bonobos, attractive females are more likely to win conflicts against males

16.07.2013
Female social dominance over males is rare among mammal species. Bonobos, one of our closest living relatives, are known for females holding relatively high social statuses when compared to males; though this is puzzling as the males are often bigger and stronger than the females.

Researchers of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have now analyzed the dominance relations between male and female wild bonobos and took particular interest in the high social status ranking of some females.


Bonobo man Jack grooms female Susi in Salonga National Park in the Democratic Republic of the Congo. © Caroline Deimel, LuiKotale Bonobo Project

The result: It is not female alliances that help females win conflicts. The context of the conflict does not seem to be relevant for its outcome either. Instead, the attractiveness of females plays an important role. If females display sexually attractive attributes, including sexual swellings, they win conflicts with males more easily, with the males behaving in a less aggressive way.

While intersexual dominance relations in bonobos never have been thoroughly studied in the wild, several ideas exist of how females attain their dominance status. Some researchers suggest that bonobo female dominance is facilitated by females forming coalitions which suppress male aggression. Others think of an evolutionary scenario in which females prefer non-aggressive males which renders male aggressiveness to a non-adaptive trait.

A recent study by researchers of the LuiKotale bonobo project from the Max Planck Institute for Evolutionary Anthropology reports on the outcomes of intersexual conflicts in a bonobo community near the Salonga National Park in the Democratic Republic of the Congo. Based on the analysis of outcomes of conflicts between the sexes, they found a sex-independent dominance hierarchy with several females occupying top ranks.

Furthermore they discovered that only two factors have a significant influence on the outcome of intersexual conflicts: female motivation to help offspring and attractiveness. That is, whenever females defend their offspring against male aggression, often alone but sometimes in groups, males defer to females. But even more interestingly, females are more likely to win conflicts against males during times when they exhibit sexual swellings indicating elevated fecundity.

Martin Surbeck, first author of the publication, says: “In those situations, males also aggress females less often, which is different from chimpanzees, our other closest living relatives.” The results indicate that in bonobos both female sexuality and male mating strategies are involved in the shifting dominance relationships between the sexes.

Contact

Dr. Martin Surbeck
Dept. of Primatology
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-202
Email: surbeck@­eva.mpg.de
Sandra Jacob
Press and Public Relations
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122
Fax: +49 341 3550-119
Email: jacob@­eva.mpg.de
Original publication
Martin Surbeck, Gottfried Hohmann
Intersexual dominance relationships and the influence of leverage on the outcome of conflicts in wild bonobos (Pan paniscus)

Behavioral Ecology and Sociobiology, 9 July 2013, DOI: 10.1007/s00265-013-1584-8

Dr. Martin Surbeck | Max-Planck-Institute
Further information:
http://­www.eva.mpg.de

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>