Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When atoms are getting close

06.05.2009
Shortest carbon-chlorine single bond detected until now

The description of compounds and interactions between atoms is one of the basic objectives of chemistry. Admittedly, chemical bonding models, which describe these properties very well, already exist.

However, any deviation from the normal factors may lead to improving the models further. Chemists with Professor Thomas M. Klapötke at Ludwig-Maximilians-Universität (LMU) München have now analyzed a molecule, which has an extremely short bond length.

As reported by the researchers in Nature Chemistry, the carbon atom and the chlorine atom in the so-called chlorotrinitromethane molecule are only 1.69 Angstroms apart from one another. "Non-covalent interactions are one of the factors responsible for this short distance", declared Göbel, whose doctoral thesis revealed the new results. "A better understanding of these interactions is important and useful in all areas, where molecular recognition and self-assembly come into play." (Nature Chemistry, 3 May 2009).

Chemical bond models that have been successfully used for well over a century assume that a good description of the properties of a compound can be obtained while ignoring all but the nearest-neighbour bonding interactions. The idea that electrostatic interactions between second, third and even further neighbors are important and should not be ignored has not been a common notion so far. The team of Professor Thomas M. Klapötke of the Department of Chemistry and Biochemistry at LMU Munich, primarily concerned with the synthesis and investigation of new high-energy materials, has now demonstrated for the first time that even second and third neighbors can have a decisive effect on the properties of a chemical bond.

For their investigation, the researchers chose the so-called chlorotrinitromethane molecule, a compound, consisting of the halogen chlorine and the pseudohalogen trinitromethyl group. The latter is composed of one carbon atom and three nitro groups. The trinitromethyl unit belongs to the group of pseudohalogens, which has properties similar to those of the halogens. Both groups are composed of non-metals, which are generally present in the gaseous or liquid state and form salts with metals. Contrary to the halogens, however, the pseudohalogens, instead of being true chemical elements, are chemical groups composed of different elements.

Using X-ray structural analysis, the researchers succeeded for the first time in revealing the internal structure of the chlorotrinitromethane molecule and drawing conclusions concerning the distances between the individual atoms. In their analyses, the chemists came up against a particularly interesting property of the chlorotrinitromethane molecule, namely the distance between its chlorine atom and its carbon atom is only 1.69 Angstroms. An Angstrom is 10-7 millimeters. The distance, now detected between the atoms, is the shortest distance ever observed for comparable chlorine-carbon single bonds. All previously measured distances fall within the range of approximately 1.71 and 1.91 Angstroms.

By means of theoretical calculations, carried out in cooperation with Professor Peter Politzer and Dr. Jane S. Murray of the University of New Orleans in the USA, the researchers were able to reproduce the distribution of electrical charges within the molecule. It turned out that the chlorine atom has a completely positive electrostatic potential, a rare case, since chlorine usually has a negative electrostatic potential in other molecules. Together with the charge distributions of the remaining atoms, this finding explains why the chlorine and carbon atoms are linked so tightly to one another. The results impressively show that electrostatic interactions between atoms within a molecule can have a significant effect on bond lengths, even if these atoms are not linked directly to one of the two atoms that form the bond.

In the case of chlorotrinitromethane, this effect is particularly pronounced and leads to an unusually short chlorine-carbon bond. However, it could be of importance in various other cases, especially in areas, where molecules recognize one another and assemble to larger structures. These mechanisms play an important role, for example, in biological systems and in nanotechnology.

Publication: "Chlorotrinitromethane and its exceptionally short carbon–chlorine bond";
Michael Göbel, Boris H. Tchitchanov, Jane S. Murray, Peter Politzer and Thomas M. Klapötke;
Nature Chemistry online,3 May 2009
DOI: 10.1038/nchem.179
Any correspondence should be addressed to:
Professor Thomas M. Klapötke
Department Chemistry and Biochemistry
Division Inorganic Molecule Chemistry
Phone.: +49-(0)89 / 2180 77504
Fax: +49-(0)89 / 2180 77492
E-mail: tmk@cup.uni-muenchen.de

Luise Dirscherl | EurekAlert!
Further information:
http://www.lmu.de
http://www.chemie.uni-muenchen.de/ac/klapoetke/

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>