Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Near-Atomically Flat Silicon Could Help Pave the Way to New Chemical Sensors

30.10.2012
Silicon is the workhorse of the electronics industry, serving as the base material for the tiny transistors that make it possible for digital clocks to tick and computers to calculate.

Now scientists have succeeded in creating near-atomically flat silicon, of the orientation used by the electronics industry, in a room temperature reaction. The flat silicon might one day serve as the base for new biological and chemical sensors. The researchers will present their work at the AVS 59th International Symposium and Exhibition, held Oct. 28 – Nov. 2 in Tampa, Fla.

“In essence, we have made perfect silicon surfaces in a beaker,” says team leader Melissa Hines, a chemist at Cornell University. Researchers had made perfectly flat silicon before, but the prior work focused on silicon surfaces cut along a plane of the crystal that is not used in the electronics industry. Hines’ team has created the flat surfaces along the industry-standard crystal orientation.

The creation of the team’s first near-atomically flat surface came as a bit of a surprise. It was widely believed that the dissolving process the team used to clean the silicon left rough, bumpy surfaces. Hines was working on a review paper and had asked one of her graduate students to take an picture of the surface using an instrument called a scanning tunneling microscope (STM) that can image surfaces to atomic-level detail. “When we looked at the surface, we unexpectedly realized, ‘Hey, this actually looks very flat,’” Hines says.

The microscope images showed a surface with alternating single-atom-wide rows. Using the additional tools of computer simulations and infrared spectroscopy the researchers determined that the silicon atoms in the rows were bonded to hydrogen atoms that acted like a wax, preventing the surface from further reacting once it was set out in the air. “What that means is that if you take this perfectly flat surface, pull it out of the aqueous reactants, and rinse it off, you can leave it lying around in room air on the order of 10-20 minutes without it starting to react,” says Hines. “If you had told me as a graduate student that you could have a clean surface that could just hang out in air for 10 minutes, I would have thought you were crazy.”

The team believes that part of the reason their silicon surfaces are so flat is that they dip the wafers in and out of solution approximately every 15 seconds, preventing bubbles from the reaction from building up and causing uneven etching. However, they also credit the STM images for helping them to realize just how flat the surfaces were. The team built off the information from the images by using computer simulations and other tools to reveal the exact chemical reaction steps that took place in solution. “Experimentally, this is very simple experiment: you take a piece of silicon, you swirl it in a beaker with solution, and then you pull it out and look at it. To be honest, there is no reason to think that Bell Labs did not make a surface as good as ours twenty years ago, but they did not look at it with STM, so they did not know,” says Hines.

Hines’ team is now working on adding molecules to the atomically smooth, hydrogen-terminated silicon surface in the hopes of building new chemical or biological sensors. “At this point, I can’t tell you exactly how we will accomplish this, but we have promising results and hope to be able to report more soon,” says Hines.

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION

The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.

USEFUL LINKS:

Main meeting website:
http://www2.avs.org/symposium/AVS59/pages/greetings.html
Technical Program:
http://www.avssymposium.org/
Housing and Travel Information:
http://www2.avs.org/symposium/AVS59/pages/housing_travel.html
PRESS REGISTRATION
The AVS Pressroom will be located in the Tampa Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.

To register, please contact:

Della Miller, AVS
E-mail: della@avs.org
This news release was prepared for AVS by the American Institute of Physics (AIP).
ABOUT AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

Della Miller | Newswise Science News
Further information:
http://www.avs.org

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>