Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic structure of the mammalian “fatty acid factory” determined

08.09.2008
Promising targets for drug development

Mammalian fatty acid synthase is one of the most complex molecular synthetic machines in human cells. It is also a promising target for the development of anti-cancer and anti-obesity drugs and the treatment of metabolic disorders. Now researchers at ETH Zurich have determined the atomic structure of a mammalian fatty acid synthase. Their results have just been published in Science magazine.

Synthesis of fatty acids is a central cellular process that has been studied for many decades. Fatty acids are used in the cell as energy storage compounds, messenger molecules and building blocks for the cellular envelope. Until now, individual steps of this process have been investigated using isolated bacterial enzymes. However, in higher organisms – except plants – fatty acid synthesis is catalyzed by large multifunctional proteins where many individual enzymes are brought together to form a “molecular assembly line”.

The atomic structure is the result of many years of research

As described in this week’s issue of “Science” magazine, researchers at ETH Zurich, supported by the National Centre of Excellence in Research (NCCR) in Structural Biology at the Swiss National Science Foundation, determined the high-resolution structure of a mammalian fatty acid synthase using data collected at the Swiss Light Source (SLS) of the Paul Scherrer Institute (PSI) in Switzerland.

These results crown the efforts begun in 2001 to determine the detailed structures of fatty acid synthases in higher organisms by a relatively small group of scientists at ETH Zurich. The group, consisting of Timm Maier, Marc Leibundgut and Simon Jenni in the laboratory of Prof. Nenad Ban, published their first papers describing architectures of fungal and mammalian fatty acid synthases two years ago. That was followed last year by two papers on the atomic structures of fungal fatty acid synthases and the mechanism of substrate shuttling and delivery in these multi-enzymes.

Now this latest publication describes the atomic structure of the mammalian fatty acid synthase. These results reveal the details of all catalytic active sites responsible for iterative fatty acid synthesis and show how the flexibility of this large multi-enzyme is used for transferring substrates from one enzymatic active site to the next. The structure can be considered a milestone for future research in the field.

Fatty acid synthases as drug targets?

In addition to the fundamental scientific interest in the function of this multi-enzyme that plays a central role in primary metabolism, mammalian fatty acid synthase is also considered a promising drug target. Although most fat accumulated in animals and humans is delivered to cells by ingestion and not by de novo synthesis, compounds that inhibit the function of the mammalian fatty acid synthase induce weight reduction in animals, showing potential for the treatment of obesity and obesity-related diseases, such as diabetes and coronary disorders. Furthermore, due to the increased requirement for fatty acid synthesis in cancer cells, inhibitors of this enzyme have anti-tumor activity, making fatty acid synthase an attractive drug target for anti-cancer therapy.

Multi-enzymes: the ultimate organic chemists

Mammalian fatty acid synthase belongs to a large family of multi-enzymes, some of which are responsible for the synthesis of complex natural products with antibiotic, anti-cancer, anti-fungal and immunosuppressive properties that are of outstanding medical relevance. The structure of mammalian fatty acid synthase reveals how different catalytic domains are excised or inserted in various members of this family to yield multi-enzymes capable of synthesizing a large variety of chemical products. The structure will facilitate the design of molecular assembly lines for the production of improved compounds. In particular, the engineering of novel multi-enzymes for the production of modified antibiotics is important in the fight against resistant strains of bacteria.

Literature reference:
Science 5 September 2008: Vol. 321. no. 5894, pp. 1315 – 1322, doi: 10.1126/science.1161269

Roman Klingler | alfa
Further information:
http://www.cc.ethz.ch
http://www.cc.ethz.ch/media/picturelibrary/news/Fettsaeure_Synthase
http://www.sciencemag.org/cgi/content/short/321/5894/1315

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>