Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-scale structures of ribosome could help improve antibiotics

20.05.2011
Berkeley Lab scientists reveal how protein-making machine bends without breaking

It sounds like hype from a late-night infomercial: It can twist and bend without breaking! And wait, there's more: It could someday help you fend off disease!

But in this case it's true, thanks to scientists from several institutions including the U.S. Department of Energy's Lawrence Berkeley National Laboratory. They derived atomic-scale resolution structures of the cell's protein-making machine, the ribosome, at key stages of its job.

The structures, developed primarily at Berkeley Lab's Advanced Light Source, reveal that the ribosome's ability to rotate an incredible amount without falling apart is due to the never-before-seen springiness of molecular widgets that hold it together.

The structures also provide an atom-by-atom map of the ribosome when it's fully rotated during the final phase of protein synthesis. Many antibiotics target the ribosomes of disease-causing microbes at precisely this stage. The high-resolution structures could allow scientists to develop antibiotics that better target this cellular Achilles' heel, perhaps leading to drugs that are less susceptible to resistance.

"Parts of the ribosome are much more flexible than we previously thought. In addition, now that we have a fully rotated ribosomal structure, scientists may be able to develop new antibiotics that are not as sensitive to ribosomal mutations. This could help mitigate the huge problem of multidrug resistance," says Jamie Cate, a staff scientist in Berkeley Lab's Physical Biosciences Division and an associate professor of biochemistry, molecular biology, and chemistry at the University of California at Berkeley.

Cate conducted the research with a team that includes scientists from Cornell University and Duke University. Their research is published in the May 20 issue of the journal Science.

The ribosome works like a protein assembly line. Its smaller subunit moves along messenger RNA, which contributes genetic information from the cell's DNA. The smaller subunit also binds to transfer RNA, which connect the genetic code on one end with amino acids on the other. The amino acids are stitched together into proteins by the larger subunit, which also binds to the transfer RNA. In this way, the two ribosomal subunits come together to create proteins that conduct the heavy lifting in the cells of all living things, from bacteria to trees to humans.

Scientists have used biochemistry and low-resolution electron microscopy to map much of the ribosome's structural changes throughout its protein-making cycle. But key steps remained unclear, such as a ratchet-like motion of the small ribosomal subunit relative to the large subunit as it moves in one direction along the messenger RNA to make a protein. These parts rotate relative to another, but scientists didn't know how this large-scale twisting motion worked in molecular detail — or why it didn't simply wrench the entire ribosome apart.

To find out, the scientists turned to the Advanced Light Source, a synchrotron located at Berkeley Lab that generates intense x-rays to probe the fundamental properties of molecules. Using beamline 8.3.1 and the SIBYLS beamlines, they determined the structure of Escherichia coli ribosomes in two key states for the first time at an atomic-scale resolution. In the first state, transfer RNA is bound to the two subunits in a configuration that occurs after the ribosome has made and released a protein. In the second state, the ribosome's subunits are fully rotated, which occurs when the subunits are recycled and ready to make another protein. The scientists used x-ray crystallography to piece together these structures at a resolution of approximately 3.2 Ångstroms (one Ångstrom is a ten-billionth of a meter, about the radius of the smallest atoms).

The resulting structures, which are two to three times higher resolution than previous images of the ribosome at these states, capture the inner-workings of the ribosome like never before. They reveal that the ribosome machine contains molecular-scale compression springs and torsion springs made of RNA. These molecular springs keep the ribosome's subunits tethered together even as they rotate with respect to each other.

"This is first time we've seen the ribosome at the endpoint of this motion at this resolution," says Cate. "And the question is, when you have these big motions, why doesn't the ribosome fall apart. We found that the ribosome has RNA springs that adjust their shape and allow it to stay together during these large-scale motions."

The structures also provide a new way to compete in the arms race between antibiotics and the microbes they're designed to knock out.

"The ribosome is one of the major targets of antibiotics, and we've identified elements of its rotation that can be targeted by new or modified antibiotics," says Cate. "This kind of precision could be especially powerful in the age of personalized medicine. Scientists could figure out at a genetic level why someone isn't responding to an antibiotic, and then possibly switch to a more effective antibiotic that better targets the microbe that's causing their disease."

The research was supported by the National Institutes of Health's Institute of General Medical Sciences. The Advanced Light Source and beamline 8.3.1 and SIBYLS beamline are supported by the Department of Energy's Office of Science. This research was also conducted at the DOE Office of Science-supported Advanced Photon Source located at Argonne National Laboratory.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>