Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic-Level View Provides New Insight Into Translation of Touch Into Nerve Signals

08.12.2014

Whether stubbing a toe or stroking a cat, the sensation of touch starts out as a mechanical force that is then transformed into an electrical signal conveying pain or other sensations. Tiny channels in neurons act as translators by helping to formulate that signal to the brain. However, scientists know little about the fine details of how these channels work.

New work at Rockefeller University has revealed that one such channel in humans responds to mechanical force using a never-before-seen mechanism. Researchers led by Roderick MacKinnon, John D. Rockefeller Jr. Professor and head of the Laboratory of Molecular Neurobiology and Biophysics examined the TRAAK channel, which is involved in painful touch sensation, at the molecular and atomic levels, finding that it works by reducing the flow of potassium ions that create an electrical signal. The researchers’ findings were released yesterday (December 3) in Nature.


Molecular roadblock: The TRAAK channel (purple and orange) dampens sensations by letting potassium ions escape from a neuron. Researchers found the channel uses a never-before-seen system for blocking that flow of ions when it closes: A lipid (yellow) from the neuron membrane (gray) protrudes into the channel.

”It is fascinating to wonder how living cells evolved molecules capable of turning small mechanical forces, such as those associated with touch, into electrical signals in the nervous system. That question served as the impetus for this work,” MacKinnon says.

The channels that act as gates in the membranes that envelop neurons, including TRAAK, allow electrically charged atoms, called ions, to move in or out. It’s this movement that is the basis for an electrical signal that carries information.

TRAAK channels are one of 78 types of channels in the human body that transport potassium ions; there are other devoted to other ion types. By allowing potassium to trickle out of the neuron, TRAAK normally quiets the neurons, balancing out other channels, which would otherwise create a strong electrical signal for pain.

“TRAAK acts kind of like the brakes on a painful touch sensation, while other channels act as the gas. If you take away the brakes, innocuous touch becomes painful,” says first author Stephen Brohawn, a postdoc in the lab.

Prior work in the lab has shown TRAAK responds to membrane tension – that is stretching caused by a physical force. However, it wasn’t clear how this force caused the channel to open. In fact, scientists had previously only explained the workings of two mechanical-force sensing channels, both of which are found in bacteria.

After purifying the protein that makes up TRAAK, the team crystallized it and determined its structure using X-ray diffraction analysis. Based on the pattern produced by X-rays bounced off the crystallized protein, scientists can infer the structure of the molecule. But because it is difficult to get high-quality crystals from TRAAK, the researchers used antibodies that targeted it to create a sort of scaffold to help guide the formation of crystals.

In the structural images revealed by this work, the researchers found a unique system is responsible for holding off the flow of ions. TRAAK’s central cavity, through which the ions must pass, is flanked by two spiral-shaped chains called helices. When both of these chains are kinked upward, the channel is open so potassium can leave the cell. But when one of these two chains relaxes downward, it uncovers a sort of side door into the center of the neuron membrane.

Neuron membranes, like all cell membranes, consist of two layers of molecules called lipids that have heads facing outward and greasy chains extending inward. When TRAAK’s side door is open, one of those greasy chains, called an acyl chain, pokes into TRAAK’s central cavity, blocking it so no potassium can pass. No known channel uses a mechanism like this.

“This is the first time anyone has seen, at a molecular level, how mechanical force can open a channel in animals, including humans,” Brohawn says. “When the membrane stretches, TRAAK widens, sort of like a dot on a balloon that expands as it is inflated. That wider conformation pulls the helices upward, preventing an acyl chain from blocking the channel, and so leaving it open for potassium ions.”

“The direct involvement of lipid molecules in the gating mechanism begins to explain another well-known property of TRAAK channels – that their gating is sensitive to general anesthetics and other molecules known to enter the lipid membrane where they insert themselves between its acyl chains. By doing so, it appears these anesthetics can shut down pain sensations by locking TRAAK in an open position,” MacKinnon says.

Zach Veilleux | newswise

Further reports about: Nerve Rockefeller Translation anesthetics blocking brakes chains humans ions neurons pain potassium potassium ions structure upward

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>