Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atom-Sized Craters Make a Catalyst Much More Active

30.11.2015

SLAC, Stanford Discovery Could Speed Important Chemical Reactions, Such As Making Hydrogen Fuel

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by scientists at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory.


Charlie Tsai/ Stanford University

Illustration of a catalyst being bombarded with argon atoms to create holes where chemical reactions can take place. The catalyst is molybdenum disulfide, or MoS2. The bombardment removed about one-tenth of the sulfur atoms (yellow) on its surface. Researchers then draped the holey catalyst over microscopic bumps to change the spacing of the atoms in a way that made the catalyst even more active.


Hong Li/Stanford Nanocharacterizaton Laboratory

This electron microscope image of a molybdenum sulfide catalyst shows “holes” left by removing sulfur atoms. Creating these holes and stretching the catalyst to change the spacing of its atoms made the catalyst much more active in promoting chemical reactions. The bright dots are molybdenum atoms; the lighter ones are sulfur. The image measures 4 nanometers on a side.

The method could offer a much cheaper way to rev up the production of clean hydrogen fuel from water, the researchers said, and should also apply to other catalysts that promote useful chemical reactions. The study was published Nov. 9 in Nature Materials.

“This is just the first indication of a new effect, very much in the research stage,” said Xiaolin Zheng, an associate professor of mechanical engineering at Stanford who led the study. “But it opens up totally new possibilities yet to be explored.”

Finding a Cheap, Abundant Substitute

Catalysts are substances that promote chemical reactions without being consumed themselves, so they can be used over and over again. Natural catalysts are endlessly at work in plants, animals and our bodies. Industrial catalysts are used to make fuel, fertilizer and consumer products; they’re a multi-billion-dollar industry in their own right.

The catalyst studied here, molybdenum disulfide or MoS2, helps remove sulfur from petroleum in refineries. But scientists think it might also be a good alternative to platinum as a catalyst for a reaction that joins hydrogen atoms together to make hydrogen gas for fuel.

“We know platinum is very good at catalyzing this reaction,” said study co-author Jens Nørskov, director of the SUNCAT Center for Interface Science and Catalysis, a joint Stanford/SLAC institute. “But it’s a non-starter because of its rarity. There isn’t enough of it on Earth for large-scale hydrogen fuel production.”

MoS2 is much cheaper and made of abundant ingredients, and it comes in flexible sheets just one molecule thick, which are stacked together to make catalyst particles, Zheng said. All the catalytic action takes place on the edges of those sheets, where dangling chemical bonds can grab passing atoms and hold them together until they react.

Researchers have tried all sorts of schemes to increase the active area where this atomic matchmaking goes on. Most of them involve engineering the catalyst sheets to expose more edges, or adding chemicals to make the edges more active.

A Holey, Stretchy Solution

In the new approach, Stanford postdoctoral researcher Hong Li used an instrument in the Stanford Nanocharacterization Laboratory to bombard a sheet of MoS2 with argon atoms. This knocked about 1 out of 10 sulfur atoms out of the surface of the sheet, leaving holes surrounded by dangling bonds.

Then he stretched the holey sheet over microscopic bumps made of silicon dioxide coated with gold. He wet the sheet with a solvent, and when it dried the sheet was permanently deformed: The spacing of the atoms had changed in a way that made the holes much more chemically reactive.

“Before, the top surface of the sheet was not reactive. It was inert – zero, almost,” Zheng said. “Now the surface is more catalytically active than the edges. And we can tune this activity so the bonds that form on the catalyst are just right – strong enough to hold the reacting atoms in place, but weak enough so they’ll let go of the finished product once the atoms have joined together.”

SUNCAT theorists, including graduate student Charlie Tsai, played an important role in predicting which combinations of bombarding and stretching would produce the best results, using calculations made with SLAC supercomputers. The researchers said a combination of computation and experiment will be important in finding completely new kinds of active catalytic sites in the future.

Going forward, Zheng said, “We need to figure out how to do this in the layered catalytic particles that are used in industry, and whether we can apply the same idea to other catalytic materials.”

They’ll also need to find a better way to make the atom-sized holes, Tsai said. “Bombarding with argon is not practical,” he said. “The procedure is expensive, and it can’t really be scaled up for things like fuel production. So we’ve been working on a follow-up study where we try to replicate the results using a simpler process.”

Scientists from the Stanford Institute for Materials and Energy Research (SIMES) also played a key role in these experiments. The research was supported by the Samsung Advanced Institute of Technology (SAIT) and Samsung R&D Center America, Silicon Valley, and by SUNCAT and the Center on Nanostructuring for Efficient Energy Conversion at Stanford, both funded by the DOE Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. For more information, please visit slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Contact Information
Andrew Gordon
External Communications Manager
agordon@slac.stanford.edu
Phone: 650-926-2282
Mobile: 510-325-9303

Andrew Gordon | newswise

Further reports about: Accelerator Energy SLAC catalysts chemical reactions hydrogen fuel

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>