Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atlas shows how genes affect our metabolism

12.05.2014

New atlas of molecules paves the way for improved understanding of metabolic diseases

In the most comprehensive exploration of the association between genetic variation and human metabolism, researchers have provided unprecedented insights into how genetic variants influence complex disease and drug response through metabolic pathways.

The team has linked 145 genetic regions with more than 400 molecules involved in human metabolism in human blood. This atlas of genetic associations with metabolism provides many new opportunities to understand the molecular pathways underlying associations with common, complex diseases.

Metabolic molecules, known as metabolites, include a wide range of different molecules such as vitamins, lipids, carbohydrates and nucleotides. They make up parts of, or are the products of, all biological pathways. This new compendium of associations between genetic regions and metabolite levels provides a powerful tool to identify genes that could be used in drug and diagnostic tests for a wide range of metabolic disorders.

"The sheer wealth of biological information we have uncovered is extraordinary," says Dr Nicole Soranzo, senior author from the Wellcome Trust Sanger Institute. "It's exciting to think that researchers can now take this freely available information forward to better understand the molecular underpinnings of a vast range of metabolic associations."

The team measured the levels of a large number of metabolites, both those already known and many as yet uncharacterised, from many different metabolic pathways.

They found 90 new genetic associations, trebling the figure of known genetic associations with metabolites. In many of the cases where metabolites were known, the team were able to link the molecule to gene function. They mapped genes to their likely substrates or products and linked these to a number of conditions, including hypertension, cardiovascular disease and diabetes.

They further found that these genetic regions map preferentially to genes that are currently targeted in drug-development programmes. This provides new opportunities to assess genetic influences on drug response, and to assess the potential for existing drugs to treat a wide range of diseases.

"We developed an open-access database that allows researchers to easily search through the findings, to understand genetic variants associated with metabolism one metabolite at a time and in the context of the complete metabolic network," says Dr Gabi Kastenmüller, co-senior author from the Helmholtz Center Munich, Germany. "This database will facilitate drug discovery for metabolic disorders and also help researchers to understand the biology behind disease."

Other associations suggest tantalising possibilities for further study. For instance, a number of the genetic associations identified involved aromatic acids, such as tryptophan, which are important for brain function. While this study did not measure association of metabolites in the brain, these genetic findings open new avenues to assess potential genetic influences on brain function and responses to drugs that affect brain function, such as antidepressants.

"This work provides an important new window into the genetic variation underlying human metabolism," said Dr Eric Fauman, study co-author and Associate Research Fellow from Pfizer Inc. "Through targeted Precision Medicine and by linking human disease genes to in vivo biological markers, we hope to enhance our ability to deliver impactful new medicines for patients across a variety of disorders."

###

Notes to Editors

Publication Details

Shin S-Y et al (2014) An atlas of genetic influences on human blood metabolites. Nature Genetics. DOI: 10.1038/ng.2982

Funding

Please see the paper for a full list of funding bodies.

Participating Centres

Please see the paper for a full list of participating centres.

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mark Thomson | Eurek Alert!
Further information:
http://www.sanger.ac.uk

Further reports about: Atlas Sanger Trust diseases disorders function genes metabolic metabolism metabolites pathways

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>