Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the methane source of plants

25.06.2014

Plants produce greenhouse gas from the amino acid methionine

Summary:
There are more natural sources of the greenhouse gas methane than previously known to science. Plants are one of these sources. A German-British team led by researchers of the Max Planck Institute for Chemistry in Mainz and the University of Heidelberg, recently discovered that methane in plants is produced from the amino acid methionine, which all living organisms need for the building of proteins.


Researchers grow tobacco plants in a sealed container and add the amino acid methionine to it.

Frederik Althoff


The sources of the greenhouse gas methan

MPI or Chemistry

The scientists also propose a mechanism which could explain the abiotic production of methane, i.e. without the aid of enzymes, in plant cells. Already in 2006, the Max Planck researchers discovered that plants can release the gas. However, it remained unclear how the hydrocarbons were created in the plants.

Researchers have now discovered that methane is also released from fungi. Until a few years ago, it was only known that the gas is formed naturally in volcano eruptions, forest fires and by microorganisms which metabolize without oxygen.

The traces of methane in the atmosphere are small but they have a great impact on climate. After all, it’s greenhouse effect is 25 times greater than that of carbon dioxide. This means that when Frank Keppler, together with his working group from the Max Planck Institute for Chemistry and the Ruprecht-Karls University of Heidelberg discovered new sources of methane, it is also relevant to the understanding of the climate. If nothing else, the researchers broke down the biology dogma, when a few years ago, they discovered that methane is not only produced by microorganisms but also, especially now, by oxygen.

As happens most of the time when a researcher challenges a doctrine that has been accepted for decades, some experts have difficulties in accepting the new point of view. The Mainz researchers, however, can now refute one argument of the skeptics. They have not only identified the sulphur containing amino acid methionine as a substance that emits the environment damaging gas, but also provide indications about how this could be happening. “Some critics held it against us that we could not explain this previously,” says Frank Keppler.

Labeled methionine reveals the plant methane source

In order to get to the bottom of the methane source, Keppler and his colleagues took two approaches. Firstly, they infiltrated tobacco plant leafs with specially labeled methionine and let the offshoots grow on a culture medium with the prepared methionine in further experiments. The amino acid in the methyl group which scientist considered could be a precursor for methane, received a particularly high amount of carbon-13. This heavy carbon isotope can be clearly differentiated from ordinary carbon-12 in appropriate analyses. “We then found the labeled carbon atom in the methane which was emitted from the plants,” says Frank Keppler.

Secondly, the researchers conducted test-tube experiments, in an aqueous solution - an realistic scenario, as most plant cells largely consist of water. They combined various methylated substances, which contain a methyl group derived from methane such as for example methionine, dimethyl sulphoxide or lecithin with iron ions, ascorbic acid and hydrogen peroxide. The latter are also responsible for the incorporation or removal of methyl groups in other molecules in plants, fungi and animals. In the experiments methane was formed from methionine and a few other sulphur containing substances which, however, are not found in plants - this happened by abiotic means, i.e. without any biochemical addition of enzymes.

“Apparently the linking of the methyl group with another sulphur atom is a prerequisite for this,” says Frank Keppler. “Methane was only produced in noteworthy quantities in such substances.” The hydrocarbon was also split off in the form of dimethyl sulphoxide. “In plants this does not play a role, however in algae this could be an important chemical precursor from which methane is emitted,” says Keppler. “This finding could be of great assistance in explaining the methane-ocean paradox.” A considerable amount of methane is emitted from the world’s oceans, although the oceans have a high oxygen content. Biologists cannot explain this as long as they accept the assumption that microorganisms only produce methane when no oxygen is available.

Methane, a coincidence or waste product?

“We have not proven yet if the abiotic mechanism which we observed in the test-tubes also really works like this in plants,” says Frank Keppler. “This is what we want to find out in future work.” By identifying methionine as the chemical precursor for greenhouse gas, they already took the first step. At the moment it is also still unclear if methane forms in plants by coincidence, as a result of the required substances coming together in their cells at this particular point in time. Or whether it is a waste product, so to say, from a reaction of which the other products are important for the metabolism of plants.

However, it is already evident that plants contain other, previously unknown sources of greenhouse gases, in addition to methionine. For example, in fungi, methane also forms from methionine. This was recently proven by researchers led by Frank Keppler. In addition, the gas is also produced in plants in other ways. In earlier works, researchers observed that UV light releases methane from plant pectin. This photochemical mechanism plays an important role in the decomposition of dead plant material, while the process observed now, occurs in living plants.

It is not yet possible to assess the quantities of methane emitted from the sources that Frank Keppler and his colleagues have found in plants, fungi and possibly also animals. Consequently, it is also not yet clear what role these methane emissions play with regard to the climate. Researchers will only be able to present reliable prognoses about this once they have found and understood all previously unknown methane sources, when they know which factors, as for example UV radiation or oxygen content in the environment, impacts on the emission of methane. This is exactly what the researchers led by Frank Keppler are working on. (PH)

Original Publication

Frederik Althoff, Kathrin Benzing, Peter Comba, Colin McRoberts, Derek R. Boyd, Steffen Greiner und Frank Keppler
Abiotic methanogenesis from organosulphur compounds under ambient conditions
Nature Communications, 24. Juni 2014; doi:10.1038/ncomms5205

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Further reports about: Max-Planck-Institut acid amino fungi greenhouse methionine methyl microorganisms

More articles from Life Sciences:

nachricht Epilepsy at the Molecular Level
10.02.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht The herbivore dilemma: How corn plants fights off simultaneous attacks
09.02.2016 | Boyce Thompson Institute for Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>