Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

At the methane source of plants

25.06.2014

Plants produce greenhouse gas from the amino acid methionine

Summary:
There are more natural sources of the greenhouse gas methane than previously known to science. Plants are one of these sources. A German-British team led by researchers of the Max Planck Institute for Chemistry in Mainz and the University of Heidelberg, recently discovered that methane in plants is produced from the amino acid methionine, which all living organisms need for the building of proteins.


Researchers grow tobacco plants in a sealed container and add the amino acid methionine to it.

Frederik Althoff


The sources of the greenhouse gas methan

MPI or Chemistry

The scientists also propose a mechanism which could explain the abiotic production of methane, i.e. without the aid of enzymes, in plant cells. Already in 2006, the Max Planck researchers discovered that plants can release the gas. However, it remained unclear how the hydrocarbons were created in the plants.

Researchers have now discovered that methane is also released from fungi. Until a few years ago, it was only known that the gas is formed naturally in volcano eruptions, forest fires and by microorganisms which metabolize without oxygen.

The traces of methane in the atmosphere are small but they have a great impact on climate. After all, it’s greenhouse effect is 25 times greater than that of carbon dioxide. This means that when Frank Keppler, together with his working group from the Max Planck Institute for Chemistry and the Ruprecht-Karls University of Heidelberg discovered new sources of methane, it is also relevant to the understanding of the climate. If nothing else, the researchers broke down the biology dogma, when a few years ago, they discovered that methane is not only produced by microorganisms but also, especially now, by oxygen.

As happens most of the time when a researcher challenges a doctrine that has been accepted for decades, some experts have difficulties in accepting the new point of view. The Mainz researchers, however, can now refute one argument of the skeptics. They have not only identified the sulphur containing amino acid methionine as a substance that emits the environment damaging gas, but also provide indications about how this could be happening. “Some critics held it against us that we could not explain this previously,” says Frank Keppler.

Labeled methionine reveals the plant methane source

In order to get to the bottom of the methane source, Keppler and his colleagues took two approaches. Firstly, they infiltrated tobacco plant leafs with specially labeled methionine and let the offshoots grow on a culture medium with the prepared methionine in further experiments. The amino acid in the methyl group which scientist considered could be a precursor for methane, received a particularly high amount of carbon-13. This heavy carbon isotope can be clearly differentiated from ordinary carbon-12 in appropriate analyses. “We then found the labeled carbon atom in the methane which was emitted from the plants,” says Frank Keppler.

Secondly, the researchers conducted test-tube experiments, in an aqueous solution - an realistic scenario, as most plant cells largely consist of water. They combined various methylated substances, which contain a methyl group derived from methane such as for example methionine, dimethyl sulphoxide or lecithin with iron ions, ascorbic acid and hydrogen peroxide. The latter are also responsible for the incorporation or removal of methyl groups in other molecules in plants, fungi and animals. In the experiments methane was formed from methionine and a few other sulphur containing substances which, however, are not found in plants - this happened by abiotic means, i.e. without any biochemical addition of enzymes.

“Apparently the linking of the methyl group with another sulphur atom is a prerequisite for this,” says Frank Keppler. “Methane was only produced in noteworthy quantities in such substances.” The hydrocarbon was also split off in the form of dimethyl sulphoxide. “In plants this does not play a role, however in algae this could be an important chemical precursor from which methane is emitted,” says Keppler. “This finding could be of great assistance in explaining the methane-ocean paradox.” A considerable amount of methane is emitted from the world’s oceans, although the oceans have a high oxygen content. Biologists cannot explain this as long as they accept the assumption that microorganisms only produce methane when no oxygen is available.

Methane, a coincidence or waste product?

“We have not proven yet if the abiotic mechanism which we observed in the test-tubes also really works like this in plants,” says Frank Keppler. “This is what we want to find out in future work.” By identifying methionine as the chemical precursor for greenhouse gas, they already took the first step. At the moment it is also still unclear if methane forms in plants by coincidence, as a result of the required substances coming together in their cells at this particular point in time. Or whether it is a waste product, so to say, from a reaction of which the other products are important for the metabolism of plants.

However, it is already evident that plants contain other, previously unknown sources of greenhouse gases, in addition to methionine. For example, in fungi, methane also forms from methionine. This was recently proven by researchers led by Frank Keppler. In addition, the gas is also produced in plants in other ways. In earlier works, researchers observed that UV light releases methane from plant pectin. This photochemical mechanism plays an important role in the decomposition of dead plant material, while the process observed now, occurs in living plants.

It is not yet possible to assess the quantities of methane emitted from the sources that Frank Keppler and his colleagues have found in plants, fungi and possibly also animals. Consequently, it is also not yet clear what role these methane emissions play with regard to the climate. Researchers will only be able to present reliable prognoses about this once they have found and understood all previously unknown methane sources, when they know which factors, as for example UV radiation or oxygen content in the environment, impacts on the emission of methane. This is exactly what the researchers led by Frank Keppler are working on. (PH)

Original Publication

Frederik Althoff, Kathrin Benzing, Peter Comba, Colin McRoberts, Derek R. Boyd, Steffen Greiner und Frank Keppler
Abiotic methanogenesis from organosulphur compounds under ambient conditions
Nature Communications, 24. Juni 2014; doi:10.1038/ncomms5205

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Further reports about: Max-Planck-Institut acid amino fungi greenhouse methionine methyl microorganisms

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Siemens sells 18 industrial gas turbines to Thailand

01.09.2015 | Press release

An engineered surface unsticks sticky water droplets

01.09.2015 | Materials Sciences

New material science research may advance tech tools

01.09.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>