Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers discover chameleons use colorful language to communicate

12.12.2013
Chameleons' body regions are 'billboards' for different types of information

To protect themselves, some animals rapidly change color when their environments change, but chameleons change colors in unusual ways when they interact with other chameleons. Arizona State University researchers have discovered that these color changes don't happen "out-of-the-blue" — instead, they convey different types of information during important social interactions.


ASU researchers have discovered that color changes in chameleons convey different types of information during important social interactions. The lizards' body stripes and head colorings are particularly important during contests over territory and females.

Credit: Megan Best

For example, when male chameleons challenge each other for territory or a female, their coloring becomes brighter and much more intense. Males that display brighter stripes when they are aggressive are more likely to approach their opponent, and those that achieve brighter head colors are more likely to win fights. Also, how quickly their heads change color is an important predictor of which chameleon will win a skirmish.

The results of the study are published online today in the journal Biology Letters.

Russell Ligon, a doctoral candidate in ASU's School of Life Sciences, and Kevin McGraw, an associate professor in the school, used photographic and mathematical modeling tools in new ways to study how the color change of veiled chameleons (Chameleon calyptratus) relates to aggressive behavior. They studied the distance, maximum brightness and speed of color change of 28 different patches across the chameleons' bodies.

"We found that the stripes, which are most apparent when chameleons display their bodies laterally to their opponents, predict the likelihood that a chameleon will follow up with an actual approach," said Ligon. "In addition, head coloration — specifically brightness and speed of color change — predicted which was lizard was going to win."

Chameleons typically have resting colors that range from brown to green, with hints of yellow, but each chameleon has unique markings. During a contest, the lizards show bright yellows, oranges, greens and turquoises. Interestingly, when the chameleons showed-off their stripes from a distance and followed that display with a "head-on" approach before combat, the important color signals on the striped parts of the body and head were accentuated.

"By using bright color signals and drastically changing their physical appearance, the chameleons' bodies become almost like a billboard — the winner of a fight is often decided before they actually make physical contact," Ligon said. "The winner is the one that causes its opponent to retreat. While sometimes they do engage in physical combat, these contests are very short — five to 15 seconds. More often than not, their color displays end the contest before they even get started."

This is the first study of its kind. The research team took pictures of color standards and estimated the sensitivity of different photoreceptors in their cameras. Then, they used information on the physiology and sensitivity of the photoreceptors of chameleons, and were able to measure the colors actually seen by the lizards. Though this method has previously been used to quantify static (unchanging) coloration, this study is the first to quantify rapid color change while incorporating the visual sensitivities of the animals under study.

There are approximately 160 species of chameleons in the world. Veiled chameleons (Chameleon calyptratus) are native to the Arabian Peninsula – specifically Yemen and Saudi Arabia. They are omnivorous and live essentially solitary lives except when mating. Many chameleons are at great risk, as destruction of their habitats is occurring at alarming rates.

The study was funded by an ASU GPSA grant and by individual sponsors.

The School of Life Sciences is an academic unit of ASU's College of Liberal Arts and Sciences.

Sandra Leander | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: ASU Chameleon Forum Life Science color change social interaction

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>