Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers develop new device to help image key proteins at room temperature

20.12.2013
A group of researchers from Arizona State University are part of a larger team reporting a major advance in the study of human proteins that could open up new avenues for more effective drugs of the future. The work is being reported in this week's Science magazine.

In the paper, "Serial femtosecond crystallography of G-protein-coupled receptors," the team reports that they have been successful in imaging at room temperature the structure of G protein-coupled receptors (GPCR) with the use of an x-ray free-electron laser.

GPCR's are a highly diverse group of membrane proteins that mediate cellular communication. Because of their involvement in key physiological and sensory processes in humans, they are thought to be prominent drug targets.

The method described in the paper was applied for the first time to this important class of proteins, for which the 2012 Nobel Prize was awarded to Brian Kobilka and Robert Lefkowitz, said John Spence, an Arizona State University professor of physics. Spence also is the director of science at National Science Foundation's BioXFEL Science and Technology Center and a team member on the Science paper.

"These GPCR's are the targets of a majority of drug molecules," Spence said, but they are notoriously difficult to work with. This is the first time structural observations of the GPCR's have been made at room temperature, allowing researchers to overcome several disadvantages of previous imaging methods of the proteins.

"Normally, protein crystallography is performed on frozen samples, to reduce the effects of radiation damage," Spence said. "But this new work was based on an entirely new approach to protein crystallography, called SFX (Serial Femtosecond Crystallography) developed jointly by ASU, the Deutsches Elektronen-Synchrotron (DESY) and the SLAC National Accelerator Laboratory."

"This method uses brief pulses of x-rays instead of freezing the sample to avoid damage, and so it reveals the structure which actually occurs in a cell at room temperature, not the frozen structure," Spence added. "The 50 femtosecond pulses (120 per second) 'outrun' radiation damage, giving a clear picture of the structure before it is vaporized by the beam."

The femtosecond crystallography technique could enable researchers to view molecular dynamics at a time-scale never observed before. Spence said the method basically operates by collecting the scattering for the image so quickly that images are obtained before the sample is destroyed by the x-ray beam.

By 'outrunning' radiation-damage processes in this way, the researchers can record the time-evolution of molecular processes at room temperature, he said.

Spence said ASU played a crucial role in the project described in Science, through the invention by Uwe Weierstall (an ASU physics professor) of an entirely new device for sample delivery suited to this class of proteins.

The lipic cubic phase (LCP) injector that Weierstall developed replaces the continuous stream of liquid (which sends a continuously refreshed stream of proteins across the pulsed x-ray beam) with a slowly moving viscous stream of 'lipid cubic phase solution,' which has the consistency of automobile grease.

"We call it our 'toothpaste jet,'" Spence said.

He added that the LCP solves three problems associated with previous SFX work, and made this new work possible:

•The viscosity slows the flow rate so the crystals emerge at about the same rate as the x-ray pulses come along, hence no protein is wasted. This is important for the study of human protein, which is more costly than diamond on a per gram basis.
•The "hit rate" is very high. Nearly all x-ray pulses hit protein particles.
•Most important, LCP is itself a growth medium for protein nanocrystals.
"A big problem with the SFX work we have been doing over the past four years is that people did not know how to make the required nanocrystals," Spence said. "Now it seems many can be grown in the LCP delivery medium itself."

The international team reporting the advance in Science includes researchers from the Scripps Research Institute, La Jolla, Calif., the Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; the Department of Physics and the Department of Chemistry and Biochemistry at ASU, Tempe, Ariz.; SLAC National Accelerator Laboratory, Menlo Park, Calif.; Trinity College, Dublin, Ireland; Uppsala University, Sweden; University of Hamburg, Germany; and Center for Ultrafast Imaging, Hamburg, Germany.

Petra Fromme led the ASU group that helped plan the experiments, characterize the samples and assist with data collection. Other members of the ASU team include: Daniel James, Dingjie Wang, Garrett Nelson, Uwe Weierstall, Nadia Zatsepin, Richard Kirian, Raimund Fromme, Shibom Basu, Christopher Kupitz, Kimberley Rendek, Ingo Grotjohann, and John Spence.

Source:
John Spence, (480) 965-6486
Media contact:
Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>