Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers develop new device to help image key proteins at room temperature

20.12.2013
A group of researchers from Arizona State University are part of a larger team reporting a major advance in the study of human proteins that could open up new avenues for more effective drugs of the future. The work is being reported in this week's Science magazine.

In the paper, "Serial femtosecond crystallography of G-protein-coupled receptors," the team reports that they have been successful in imaging at room temperature the structure of G protein-coupled receptors (GPCR) with the use of an x-ray free-electron laser.

GPCR's are a highly diverse group of membrane proteins that mediate cellular communication. Because of their involvement in key physiological and sensory processes in humans, they are thought to be prominent drug targets.

The method described in the paper was applied for the first time to this important class of proteins, for which the 2012 Nobel Prize was awarded to Brian Kobilka and Robert Lefkowitz, said John Spence, an Arizona State University professor of physics. Spence also is the director of science at National Science Foundation's BioXFEL Science and Technology Center and a team member on the Science paper.

"These GPCR's are the targets of a majority of drug molecules," Spence said, but they are notoriously difficult to work with. This is the first time structural observations of the GPCR's have been made at room temperature, allowing researchers to overcome several disadvantages of previous imaging methods of the proteins.

"Normally, protein crystallography is performed on frozen samples, to reduce the effects of radiation damage," Spence said. "But this new work was based on an entirely new approach to protein crystallography, called SFX (Serial Femtosecond Crystallography) developed jointly by ASU, the Deutsches Elektronen-Synchrotron (DESY) and the SLAC National Accelerator Laboratory."

"This method uses brief pulses of x-rays instead of freezing the sample to avoid damage, and so it reveals the structure which actually occurs in a cell at room temperature, not the frozen structure," Spence added. "The 50 femtosecond pulses (120 per second) 'outrun' radiation damage, giving a clear picture of the structure before it is vaporized by the beam."

The femtosecond crystallography technique could enable researchers to view molecular dynamics at a time-scale never observed before. Spence said the method basically operates by collecting the scattering for the image so quickly that images are obtained before the sample is destroyed by the x-ray beam.

By 'outrunning' radiation-damage processes in this way, the researchers can record the time-evolution of molecular processes at room temperature, he said.

Spence said ASU played a crucial role in the project described in Science, through the invention by Uwe Weierstall (an ASU physics professor) of an entirely new device for sample delivery suited to this class of proteins.

The lipic cubic phase (LCP) injector that Weierstall developed replaces the continuous stream of liquid (which sends a continuously refreshed stream of proteins across the pulsed x-ray beam) with a slowly moving viscous stream of 'lipid cubic phase solution,' which has the consistency of automobile grease.

"We call it our 'toothpaste jet,'" Spence said.

He added that the LCP solves three problems associated with previous SFX work, and made this new work possible:

•The viscosity slows the flow rate so the crystals emerge at about the same rate as the x-ray pulses come along, hence no protein is wasted. This is important for the study of human protein, which is more costly than diamond on a per gram basis.
•The "hit rate" is very high. Nearly all x-ray pulses hit protein particles.
•Most important, LCP is itself a growth medium for protein nanocrystals.
"A big problem with the SFX work we have been doing over the past four years is that people did not know how to make the required nanocrystals," Spence said. "Now it seems many can be grown in the LCP delivery medium itself."

The international team reporting the advance in Science includes researchers from the Scripps Research Institute, La Jolla, Calif., the Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany; the Department of Physics and the Department of Chemistry and Biochemistry at ASU, Tempe, Ariz.; SLAC National Accelerator Laboratory, Menlo Park, Calif.; Trinity College, Dublin, Ireland; Uppsala University, Sweden; University of Hamburg, Germany; and Center for Ultrafast Imaging, Hamburg, Germany.

Petra Fromme led the ASU group that helped plan the experiments, characterize the samples and assist with data collection. Other members of the ASU team include: Daniel James, Dingjie Wang, Garrett Nelson, Uwe Weierstall, Nadia Zatsepin, Richard Kirian, Raimund Fromme, Shibom Basu, Christopher Kupitz, Kimberley Rendek, Ingo Grotjohann, and John Spence.

Source:
John Spence, (480) 965-6486
Media contact:
Skip Derra, (480) 965-4823; skip.derra@asu.edu

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>