Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes as a novel target in Alzheimer’s disease

10.10.2012
Alzheimer’s disease is a severe neurodegenerative disease that affects 45% of people over 85 years of age.
The research teams of Prof. Jin-Moo Lee at Washington University in Saint Louis, USA, and Prof. Milos Pekny at Sahlgrenska Academy in Gothenburg, Sweden, have identified astrocytes as a novel target for the development of future treatment strategies. The results have just been published in the FASEB Journal.

Astrocytes are known as cells that control many functions of the healthy as well as diseased brain, including the control of regenerative responses.

In patients suffering from Alzheimer’s disease, astrocytes in the vicinity of amyloid plaques and degenerating neurons become hyperactive.

Until now, many researchers considered this astrocyte hyperactivity in the brains of Alzheimer’s disease patients as negative and contributing to the progression of this devastating disease.

The current study generated groundbreaking data with important implications. The US and Swedish research teams used a mouse model of Alzheimer’s disease in which they genetically reduced astrocyte hyperactivity. They found that such mice developed more amyloid deposits and showed more pronounced signs of neurodegeneration than mice with normal response of astrocytes.

This suggests that astrocyte response to the disease process slows down the disease progression.

- We are truly exited about these findings. Now we need to understand the mechanism underlying the beneficial role of hyperactive astrocytes in Alzheimer’s disease progression. Understanding this process on a molecular level should help us to design strategies for optimization of the astrocyte response, says Prof. Milos Pekny.

- We see that astrocyte hyperactivity in Alzheimer’s disease brains is tightly connected to activation of microglia, the brain’s own immune cells. This implies that the two cell types communicate to mediate a coordinated response to disease states, says Prof. Jin-Moo Lee.

This international collaborative team of neuroscientists is pursuing further studies to understand molecular mechanisms by which astrocytes prevent the deposition of amyloid plaques in Alzheimer’s disease.

For more information please contact:
Prof. Milos Pekny, Sahlgrenska Academy, University of Gothenburg
+4631-7863269
milos.pekny@neuro.gu.se

Krister Svahn | idw
Further information:
http://www.gu.se
http://www.fasebj.org/content/early/2012/10/03/fj.12-208660.abstract

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>