Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrocytes as a novel target in Alzheimer’s disease

10.10.2012
Alzheimer’s disease is a severe neurodegenerative disease that affects 45% of people over 85 years of age.
The research teams of Prof. Jin-Moo Lee at Washington University in Saint Louis, USA, and Prof. Milos Pekny at Sahlgrenska Academy in Gothenburg, Sweden, have identified astrocytes as a novel target for the development of future treatment strategies. The results have just been published in the FASEB Journal.

Astrocytes are known as cells that control many functions of the healthy as well as diseased brain, including the control of regenerative responses.

In patients suffering from Alzheimer’s disease, astrocytes in the vicinity of amyloid plaques and degenerating neurons become hyperactive.

Until now, many researchers considered this astrocyte hyperactivity in the brains of Alzheimer’s disease patients as negative and contributing to the progression of this devastating disease.

The current study generated groundbreaking data with important implications. The US and Swedish research teams used a mouse model of Alzheimer’s disease in which they genetically reduced astrocyte hyperactivity. They found that such mice developed more amyloid deposits and showed more pronounced signs of neurodegeneration than mice with normal response of astrocytes.

This suggests that astrocyte response to the disease process slows down the disease progression.

- We are truly exited about these findings. Now we need to understand the mechanism underlying the beneficial role of hyperactive astrocytes in Alzheimer’s disease progression. Understanding this process on a molecular level should help us to design strategies for optimization of the astrocyte response, says Prof. Milos Pekny.

- We see that astrocyte hyperactivity in Alzheimer’s disease brains is tightly connected to activation of microglia, the brain’s own immune cells. This implies that the two cell types communicate to mediate a coordinated response to disease states, says Prof. Jin-Moo Lee.

This international collaborative team of neuroscientists is pursuing further studies to understand molecular mechanisms by which astrocytes prevent the deposition of amyloid plaques in Alzheimer’s disease.

For more information please contact:
Prof. Milos Pekny, Sahlgrenska Academy, University of Gothenburg
+4631-7863269
milos.pekny@neuro.gu.se

Krister Svahn | idw
Further information:
http://www.gu.se
http://www.fasebj.org/content/early/2012/10/03/fj.12-208660.abstract

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>